Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037504    DOI: 10.1088/1674-1056/27/3/037504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys

Najam ul Hassan1, Ishfaq Ahmad Shah1, Tahira Khan2, Jun Liu(刘俊)1, Yuanyuan Gong(龚元元)1, Xuefei Miao(缪雪飞)1, Feng Xu(徐锋)1
1 MⅡT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48-xVxNi42Sn10 (x=0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0-5 T are 15.2, 18.8, and 24.3 J·kg-1·K-1 for the x=0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48-xVxNi42Sn10 alloys have a potential for applications in magnetic cooling refrigeration.
Keywords:  magnetostructural coupling      field driving capacity      refrigeration capacity      magnetocaloric effect  
Received:  29 October 2017      Revised:  19 December 2017      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Postdoctoral Science Foundation Funded Project (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833, 20160829, and 20140035), the Qing Lan Project of Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Shanxi Scholarship Council of China (Grant No. 2016-092).
Corresponding Authors:  Feng Xu     E-mail:  xufeng@njust.edu.cn

Cite this article: 

Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋) Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys 2018 Chin. Phys. B 27 037504

[1] Fang Y K, Yeh C C, Chang C W, Chang W C, Zhu M G and Li W 2007 Scr. Mater. 57 45
[2] Morrison K, Miyoshi Y and Moore J D 2008 Phys. Rev. B 78 134418
[3] Sandeman K G 2012 Scr. Mater. 67 566
[4] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[5] Lyubina J, Nenkov K, Schultz L and Gutfleisch O 2008 Phys. Rev. Lett. 101 177203
[6] Zhang H, Sun Y J, Li Y I, Wu Y Y, Long Y, Shen J, Hu F X, Sun J R and Shen B 2015 J. Appl. Phys. 117 063902
[7] Mandal K and Pal D 2007 J. Appl. Phys. 102 053906
[8] Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[9] Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150
[10] Hassan N U, Chen F, Zhang M, Shah I A, Liu J, Gong Y Y, Xu G and Xu F 2017 J. Magn. Magn. Mater. 439 120
[11] Sandeman K G, Daou R, Özcan S, Durrell J H, Mathur N D and Fray D J 2006 Phys. Rev. B 74 22443
[12] Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and de Boer F R 2012 Nat. Commun. 3 873
[13] Ullakko K, Huang J K, Kantner C, O'Handley R C and Kokorin V V 1996 Appl. Phys. Lett. 69 1966
[14] Khan N, Ali N and Stadler S 2007 J. Appl. Phys. 101 053919
[15] Liu Z H, Aksoy S and Acet M 2009 J. Appl. Phys. 105 033913
[16] Han Z D, Wang D H, Zhang C L, Xuan H C, Zhang J R, Gu B X and Du Y W 2008 J. Appl. Phys. 104 053906
[17] Planes A, Osa L M, Moya X, Krenke T, Acet M and Wassermann E F 2007 J. Magn. Magn. Mater. 310 2767
[18] Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L and Du Y W 2013 Chin. Phys. B 22 077506
[19] Li P P, Wang J M and Jiang C B 2011 Chin. Phys. B 20 028104
[20] Tian L G, Hong L Z, Yan M F, Qiao M X and Heng W G 2013 Chin. Phys. B 22 126201
[21] Han Z D, Wang D H, Zhang C L, Xuan H C, Zhang J R, Gu B X and Du Y W 2008 Solid State Commun. 146 124
[22] Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K and Oikawa K 2004 Appl. Phys. Lett. 85 198
[23] Bhobe P A, Priolkar K R and Nigam A K 2007 Appl. Phys. Lett 91 242503
[24] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
[25] Krenke T, Acet M and Wassermann E F 2005 Phys. Rev. B 72 014412
[26] Karaman I, Basaran B, Karaca H E, Karsilayan A I and Chumlyakov Y I 2007 Appl. Phys. Lett. 90 172505
[27] Wu R, Shen F, Hu F, Wang J, Bao L, Zhang L, Liu Y, Zhao Y, Liang F, Zuo W, Sun J and Shen B 2016 Sci. Rep. 6 20993
[28] Chatterjee S, Giri S and Majumdar S 2008 Phys. Rev. B 77 012404
[29] Samanta T, Dubenko I, Quetz A, Stadler S and Ali N 2012 Appl. Phys. Lett. 101 242405
[30] Sharma V K, Chattopadhyay M K and Roy S B 2007 J. Phys. D-Appl. Phys. 40 1869
[31] Han Z D, Wang D H, Zhang C L, Xuan H C, Gu B X and Du Y W 2007 Appl. Phys. Lett. 90 042507
[32] Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X and Du Y W 2006 Appl. Phys. Lett. 89 182507
[33] Sokolovskiy V V, Buchelnikov V D, Taskaev S V, Khovaylo V V, Ogura M and Entel P 2013 J. Phys. D-Appl. Phys. 46 305003
[34] Moya X, Mañosa L, Planes A, Aksoy S and Acet M 2007 Phys. Rev. B 75 184412
[35] Kaya M, Cicek M M, Dincer I and Elerman Y 2017 J. Magn. Magn. Mater. 442 429
[36] Caron L, Oub Z Q, Nguyen T T, CamThanh D T, Tegus O and Brűck E 2009 J. Magn. Magn. Mater. 321 3559
[37] Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1
[38] Liu J, Gong Y Y, Xu G Z, Peng G, Shah I A, Hassan N U and Xu F 2016 Sci. Rep. 6 23386
[39] Rama Rao N V, Chandrasekaran V and Suresh K G 2010 J. Appl. Phys. 108 043913
[40] Shah I A, Hassan N U, Rauf A, Liu J, Gong Y Y, Xu G and Xu F 2017 Chin. Phys. B 26 097501
[41] Sharma J and Suresh K G 2015 J. Alloys Compd. 620 329
[42] Shah I A, Hassan N U, Liu J, Gong Y Y, Xu G and Xu F 2017 Chin. Phys. B 26 017501
[43] Aryal A, Quetz A, Pandey S, Samanta T, Dubenko I, Hill M, Mazumdar D, Stadler S and Ali N 2017 J. Alloys Compd. 709 142
[44] Ma S C, Wang D H, Xuan H C, Shen L J, Cao Q Q and Du Y W 2011 Chin. Phys. B 20 087502
[45] Lai J W, Zheng Z G, Zhong X C, Montemayor R, Liu Z W and Zeng D C 2015 Intermetallics 63 7
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[13] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
No Suggested Reading articles found!