CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electro-statically controllable graphene local heater |
Hui-Shan Wang(王慧山)1,3,4, Lian-Wen Deng(邓联文)2, Lei Li(李蕾)2, Qiu-Juan Sun(孙秋娟)2, Hong Xie(谢红)1,3, Hao-Min Wang(王浩敏)1,3 |
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 School of Physics and Electronics, Central South University, Changsha 410083, China;
3 CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai 200050, China;
4 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We report on current-induced thermal power investigation of graphene nanostructure for potential local-heating applications. It is found that the efficiency of heating can be greatly improved if graphene is patterned into structures with narrow width and long channel. In a narrow graphene-ribbon, the Joule heating power exhibits an obvious dependence on the back-gate voltage. By monitoring Raman spectra, the temperature of graphene-ribbon can be determined. The temperature of graphene-ribbon is modulated by the electric field effect when the sample is sourced with a relatively high current.
|
Received: 12 October 2017
Revised: 18 December 2017
Accepted manuscript online:
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFF0206106), the Chinese Academy of Sciences (Grant No. XDB04040300), the National Natural Science Foundation of China (Grant No. 51772317), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 16ZR1442700). |
Corresponding Authors:
Lian-Wen Deng, Hao-Min Wang
E-mail: denglw@csu.edu.cn;hmwang@mail.sim.ac.cn
|
Cite this article:
Hui-Shan Wang(王慧山), Lian-Wen Deng(邓联文), Lei Li(李蕾), Qiu-Juan Sun(孙秋娟), Hong Xie(谢红), Hao-Min Wang(王浩敏) Electro-statically controllable graphene local heater 2018 Chin. Phys. B 27 037203
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[3] |
Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[4] |
Li X L, Wang X R, Zhang L, Lee S W and Dai H J 2008 Science 319 1229
|
[5] |
Han M Y, Özyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805
|
[6] |
Chen Z H, Lin Y M, Rooks M J and Avouris P 2007 Physica E 40 228
|
[7] |
Moser J, Barreiro A and Bachtold A 2007 Appl. Phys. Lett. 91 163513
|
[8] |
Murali R, Yang Y X, Brenner K, Beck T and Meindl J D 2009 Appl. Phys. Lett. 94 243114
|
[9] |
Kang J, Kim H, Kim K S, Lee S, Bae S, Ahn J, Kim Y, Choi J and Hong B H 2011 Nano Lett. 11 5154
|
[10] |
Sui D, Huang Y, Huang L, Liang J J, Ma Y F and Chen Y S 2011 Small 7 3186
|
[11] |
Wang X F, Zhao H M, Yang Y and Ren T L 2017 Chin. Phys. B 26 038501
|
[12] |
Lin S Y, Zhang T Y, Lu Q, Wang D Y, Yang Y, Wu X M and Ren T L 2017 Rsc Advances 43 27001
|
[13] |
Zhang T Y, Zhao H M, Wang D Y, Wang Q, Pang Y, Deng N Q, Cao H W, Yang Y and Ren T L 2017 Nanoscale 9 14357
|
[14] |
Sun J Y, Chen Y B, Priydarshi M K, Chen Z, Bachmatiuk A, Zou Z Y, Chen Z L, Song X J, Gao Y F, Rümmeli M H, Zhang Y F and Liu Z F 2015 Nano Lett. 15 5846
|
[15] |
Freitag M, Steiner M, Martin Y, Perebeinos V, Chen Z H, Tsang J C and Avouris P 2009 Nano Lett. 9 1883
|
[16] |
Chae D H, Krauss B, Klitzing K V and Smet J H 2009 Nano Lett. 10 466
|
[17] |
Yeo J, Kim G, Hong S, Lee J, Kwon J, Lee H, Park H, Manoroktul W, Lee M and Lee B J 2014 Small 10 5014
|
[18] |
Wu T R, Ding G Q, Shen H L, Wang H M, Sun L, Jiang D, Xie X M and Jiang M H 2013 Adv. Funct. Mater. 23 198
|
[19] |
Incze P N, Osvath Z, Kamaras K and Biro L P 2008 Carbon 46 1435
|
[20] |
Meric I, Han M Y, Young A F, Özyilmaz B, Kim P and Shepard K L 2008 Nat. Nanotechnol. 3 654
|
[21] |
Barreiro A, Lazzeri M, Moser J, Mauri F and Bachtold A 2009 Phys. Rev. Lett. 103 076601
|
[22] |
Blake P, Yang R, Morozov S V, Schedin F, Ponomarenko L A, Zhukov A A, Nair R R, Grigorieva I V, Novoselov K S and Geim A K 2009 Solid State Commun. 149 1068
|
[23] |
Huard B, Stander N, Sulpizio J A and Gordon D G 2008 Phys. Rev. B 78 121402
|
[24] |
Wang H M, Wu Y H, Cong C X, Shang J Z and Yu T 2010 ACS Nano 4 7221
|
[25] |
Archanjo B S, Barboza A P M, Neves B R A, Malard L M, Ferreira E H M, Brant J C, Alves E S, Plentz F, Carozo V and Fragneaud B 2012 Nanotechnology 23 255305
|
[26] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S and Roth S 2006 Phys. Rev. Lett. 97 187401
|
[27] |
Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H, Feng Y P and Shen Z X 2007 Nano Lett. 7 2758
|
[28] |
Calizo I, Miao F, Bao W, Lau C N and Balandin A A 2007 Appl. Phys. Lett. 91 071913
|
[29] |
Calizo I, Balandin A A, Bao W, Miao F and Lau C N 2007 Nano Lett. 7 2645
|
[30] |
Ni Z H, Fan H M, Fan X F, Wang H M, Zheng Z, Feng Y P, Wu Y H and Shen Z X 2007 J. Raman Spectrosc. 38 1449
|
[31] |
Huang F M, Yue K T, Tan P H, Zhang S L, Shi Z J, Zhou X H and Gu Z N 1998 J. Appl. Phys. 84 4022
|
[32] |
Tian S B, Yang Y, Liu Z, Wang C, Pan R H, Gu C Z and Li J J 2016 Carbon 104 27
|
[33] |
Zhou H Q, Qiu C Y, Yu F, Yang H C, Chen M J, Hu L J, Guo Y J and Sun L F 2011 J. Phys. D:Appl. Phys. 44 185404
|
[34] |
Nef C, Pósa L, Makk P, Fu W Y, Halbritter A, Schönenberger C and Calame Michel 2014 Nanoscale 6 7249
|
[35] |
Yan J, Zhang Y B, Kim P and Pinczuk A 2007 Phys. Rev. Lett. 98 166802
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|