Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037203    DOI: 10.1088/1674-1056/27/3/037203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electro-statically controllable graphene local heater

Hui-Shan Wang(王慧山)1,3,4, Lian-Wen Deng(邓联文)2, Lei Li(李蕾)2, Qiu-Juan Sun(孙秋娟)2, Hong Xie(谢红)1,3, Hao-Min Wang(王浩敏)1,3
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 School of Physics and Electronics, Central South University, Changsha 410083, China;
3 CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai 200050, China;
4 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We report on current-induced thermal power investigation of graphene nanostructure for potential local-heating applications. It is found that the efficiency of heating can be greatly improved if graphene is patterned into structures with narrow width and long channel. In a narrow graphene-ribbon, the Joule heating power exhibits an obvious dependence on the back-gate voltage. By monitoring Raman spectra, the temperature of graphene-ribbon can be determined. The temperature of graphene-ribbon is modulated by the electric field effect when the sample is sourced with a relatively high current.

Keywords:  graphene      electric field effect      Raman  
Received:  12 October 2017      Revised:  18 December 2017      Accepted manuscript online: 
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.20.At (Surface states, band structure, electron density of states)  
  74.25.nd (Raman and optical spectroscopy)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFF0206106), the Chinese Academy of Sciences (Grant No. XDB04040300), the National Natural Science Foundation of China (Grant No. 51772317), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 16ZR1442700).

Corresponding Authors:  Lian-Wen Deng, Hao-Min Wang     E-mail:  denglw@csu.edu.cn;hmwang@mail.sim.ac.cn

Cite this article: 

Hui-Shan Wang(王慧山), Lian-Wen Deng(邓联文), Lei Li(李蕾), Qiu-Juan Sun(孙秋娟), Hong Xie(谢红), Hao-Min Wang(王浩敏) Electro-statically controllable graphene local heater 2018 Chin. Phys. B 27 037203

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[4] Li X L, Wang X R, Zhang L, Lee S W and Dai H J 2008 Science 319 1229
[5] Han M Y, Özyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805
[6] Chen Z H, Lin Y M, Rooks M J and Avouris P 2007 Physica E 40 228
[7] Moser J, Barreiro A and Bachtold A 2007 Appl. Phys. Lett. 91 163513
[8] Murali R, Yang Y X, Brenner K, Beck T and Meindl J D 2009 Appl. Phys. Lett. 94 243114
[9] Kang J, Kim H, Kim K S, Lee S, Bae S, Ahn J, Kim Y, Choi J and Hong B H 2011 Nano Lett. 11 5154
[10] Sui D, Huang Y, Huang L, Liang J J, Ma Y F and Chen Y S 2011 Small 7 3186
[11] Wang X F, Zhao H M, Yang Y and Ren T L 2017 Chin. Phys. B 26 038501
[12] Lin S Y, Zhang T Y, Lu Q, Wang D Y, Yang Y, Wu X M and Ren T L 2017 Rsc Advances 43 27001
[13] Zhang T Y, Zhao H M, Wang D Y, Wang Q, Pang Y, Deng N Q, Cao H W, Yang Y and Ren T L 2017 Nanoscale 9 14357
[14] Sun J Y, Chen Y B, Priydarshi M K, Chen Z, Bachmatiuk A, Zou Z Y, Chen Z L, Song X J, Gao Y F, Rümmeli M H, Zhang Y F and Liu Z F 2015 Nano Lett. 15 5846
[15] Freitag M, Steiner M, Martin Y, Perebeinos V, Chen Z H, Tsang J C and Avouris P 2009 Nano Lett. 9 1883
[16] Chae D H, Krauss B, Klitzing K V and Smet J H 2009 Nano Lett. 10 466
[17] Yeo J, Kim G, Hong S, Lee J, Kwon J, Lee H, Park H, Manoroktul W, Lee M and Lee B J 2014 Small 10 5014
[18] Wu T R, Ding G Q, Shen H L, Wang H M, Sun L, Jiang D, Xie X M and Jiang M H 2013 Adv. Funct. Mater. 23 198
[19] Incze P N, Osvath Z, Kamaras K and Biro L P 2008 Carbon 46 1435
[20] Meric I, Han M Y, Young A F, Özyilmaz B, Kim P and Shepard K L 2008 Nat. Nanotechnol. 3 654
[21] Barreiro A, Lazzeri M, Moser J, Mauri F and Bachtold A 2009 Phys. Rev. Lett. 103 076601
[22] Blake P, Yang R, Morozov S V, Schedin F, Ponomarenko L A, Zhukov A A, Nair R R, Grigorieva I V, Novoselov K S and Geim A K 2009 Solid State Commun. 149 1068
[23] Huard B, Stander N, Sulpizio J A and Gordon D G 2008 Phys. Rev. B 78 121402
[24] Wang H M, Wu Y H, Cong C X, Shang J Z and Yu T 2010 ACS Nano 4 7221
[25] Archanjo B S, Barboza A P M, Neves B R A, Malard L M, Ferreira E H M, Brant J C, Alves E S, Plentz F, Carozo V and Fragneaud B 2012 Nanotechnology 23 255305
[26] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S and Roth S 2006 Phys. Rev. Lett. 97 187401
[27] Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H, Feng Y P and Shen Z X 2007 Nano Lett. 7 2758
[28] Calizo I, Miao F, Bao W, Lau C N and Balandin A A 2007 Appl. Phys. Lett. 91 071913
[29] Calizo I, Balandin A A, Bao W, Miao F and Lau C N 2007 Nano Lett. 7 2645
[30] Ni Z H, Fan H M, Fan X F, Wang H M, Zheng Z, Feng Y P, Wu Y H and Shen Z X 2007 J. Raman Spectrosc. 38 1449
[31] Huang F M, Yue K T, Tan P H, Zhang S L, Shi Z J, Zhou X H and Gu Z N 1998 J. Appl. Phys. 84 4022
[32] Tian S B, Yang Y, Liu Z, Wang C, Pan R H, Gu C Z and Li J J 2016 Carbon 104 27
[33] Zhou H Q, Qiu C Y, Yu F, Yang H C, Chen M J, Hu L J, Guo Y J and Sun L F 2011 J. Phys. D:Appl. Phys. 44 185404
[34] Nef C, Pósa L, Makk P, Fu W Y, Halbritter A, Schönenberger C and Calame Michel 2014 Nanoscale 6 7249
[35] Yan J, Zhang Y B, Kim P and Pinczuk A 2007 Phys. Rev. Lett. 98 166802
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[8] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[11] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[12] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[15] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
No Suggested Reading articles found!