Special Issue:
SPECIAL TOPIC — New generation solar cells
|
SPECIAL TOPIC—New generation solar cells |
Prev
Next
|
|
|
Importance of ligands on TiO2 nanocrystals for perovskite solar cells |
Yao Zhao(赵耀), Yi-Cheng Zhao(赵怡程), Wen-Ke Zhou(周文可), Rui Fu(伏睿), Qi Li(李琪), Da-Peng Yu(俞大鹏), Qing Zhao(赵清) |
State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract The fabrication of high-quality electron-selective layers at low temperature is a prerequisite to realizing efficient flexible and tandem perovskite solar cells (PSCs). A colloidal-quantum-dot ink that contains TiO2 nanocrystals enables the deposition of a flat film with matched energy level for PSCs; however, the selection of ligands on the TiO2 surface is still unexplored. Here, we systematically studied the effect of the titanium diisopropoxide bis(acetylacetonate) (TiAc2) ligand on the performance of PSCs with a planar n-i-p architecture. We prepared TiO2 nanocrystals from TiCl4 and ethyl alcohol with Cl- ligands attached on its surface and we found that a tiny amount of TiAc2 treatment of as-prepared TiO2 nanocrystals in a mixed solution of chloroform and methyl alcohol can enhance PSC power conversion efficiency (PCE) from 14.7% to 18.3%. To investigate the effect of TiAc2 ligand on PSCs, TiO2 samples with different TiAc2 content were prepared by adding TiAc2 into the as-obtained TiO2 nanocrystal solution. We use x-ray photoelectron spectroscopy to identify the content of Cl so as to reveal that Cl ligands can be substituted by TiAc2. We speculate that the improvement in PCE originates from amorphous TiO2 formation on the TiO2 nanocrystal surface, whereby a single-molecule layer of amorphous TiO2 facilitates charge transfer between the perovskite film and the TiO2 electronic transport layer, but excessive TiAc2 lowers the PSC performance dramatically. We further prove our hypothesis by x-ray diffraction measurements. We believe the PCE of PSCs can be further improved by carefully choosing the type and changing the content of surface ligands on TiO2 nanocrystal.
|
Received: 27 September 2017
Revised: 21 November 2017
Accepted manuscript online:
|
PACS:
|
84.60.Jt
|
(Photoelectric conversion)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
84.60.Bk
|
(Performance characteristics of energy conversion systems; figure of merit)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51622201, 61571015, and 91433102). |
Corresponding Authors:
Qing Zhao
E-mail: zhaoqing@pku.edu.cn
|
Cite this article:
Yao Zhao(赵耀), Yi-Cheng Zhao(赵怡程), Wen-Ke Zhou(周文可), Rui Fu(伏睿), Qi Li(李琪), Da-Peng Yu(俞大鹏), Qing Zhao(赵清) Importance of ligands on TiO2 nanocrystals for perovskite solar cells 2018 Chin. Phys. B 27 018401
|
[1] |
Papavassiliou G C 1996 Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 286 231
|
[2] |
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M and Han H 2014 Science 345 295
|
[3] |
Zhang W, Anaya M, Lozano G, Calvo M E, Johnston M B, Míguez H and Snaith H J 2015 Nano Lett. 15 1698
|
[4] |
Hao F, Stoumpos C C, Cao D H, Chang R P H and Kanatzidis M G 2014 Nat. Photon. 8 489
|
[5] |
Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
|
[6] |
Snaith H J 2013 J. Phys. Chem. Lett. 4 3623
|
[7] |
Heo J H, Im S H, Noh J H, Mandal T N, Lim C-S, Chang J A, Lee Y H, Kim H J, Sarkar A, NazeeruddinMd K, Gratzel M and Seok S I 2013 Nat. Photon. 7 486
|
[8] |
Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M and Han L 2015 Science 350 944
|
[9] |
Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
|
[10] |
Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
|
[11] |
Li Y, Cooper J K, Liu W, Sutter-Fella C M, Amani M, Beeman J W, Javey A, Ager J W, Liu Y, Toma F M and Sharp I D 2016 Nat. Commun. 7 12446
|
[12] |
Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H and Bakr O M 2015 Science 347 519
|
[13] |
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M and Park N G 2012 Sci. Rep. 2 591
|
[14] |
Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
|
[15] |
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I 2017 Science 356 1376
|
[16] |
Cao J, Yin J, Yuan S, Zhao Y, Li J and Zheng N 2015 Nanoscale 7 9443
|
[17] |
Lee J W, Kim H S and Park N G 2016 Acc. Chem. Res. 49 311
|
[18] |
Wang Z, Xia Y, Chen Y and Huang W 2017 J. Mater. Chem. A 5 12602
|
[19] |
Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H and Gratzel M 2015 Nat. Chem. 7 703
|
[20] |
Qin C, Matsushima T, Fujihara T and Adachi C 2017 Adv. Mater. 29 1603808
|
[21] |
Quan L N, Yuan M, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H and Sargent E H 2016 J. Am. Chem. Soc. 138 2649
|
[22] |
Rong Y, Hou X, Hu Y, Mei A, Liu L, Wang P and Han H 2017 Nat. Commun. 8 14555
|
[23] |
Si H, Liao Q, Kang Z, Ou Y, Meng J, Liu Y, Zhang Z and Zhang Y 2017 Adv. Function. Mater. 27 1701804
|
[24] |
Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T and Han L 2017 Adv. Mater. 29 1701073
|
[25] |
Zhang J, Hu Z, Huang L, Yue G, Liu J, Lu X, Hu Z, Shang M, Han L and Zhu Y 2015 Chem. Commun. 51 7047
|
[26] |
Zuo C and Ding L 2014 Nanoscale 6 9935
|
[27] |
Xu L G, Qiu W, Chen R F, Zhang H M and Huang W 2018 Acta Phys. Chim. Sin. 34 36
|
[28] |
You J, Hong Z, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H and Yang Y 2014 ACS Nano 8 1674
|
[29] |
Shin S S, Yang W S, Noh J H, Suk J H, Jeon N J, Park J H, Kim J S, Seong W M and Seok S I 2015 Nat. Commun. 6 7410
|
[30] |
Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522
|
[31] |
Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G and Crochet J J 2003 J. Am. Chem. Soc. 125 14539
|
[32] |
Docampo P, Ball J M, Darwich M, Eperon G E and Snaith H J 2013 Nat. Commun. 4 2761
|
[33] |
Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S and Sargent E H 2017 Science 355 722
|
[34] |
Kim I S, Haasch R T, Cao D H, Farha O K, Hupp J T, Kanatzidis M G and Martinson A B F 2016 ACS Appl. Mater. Interf. 8 24310
|
[35] |
Wang W G, Zhu L, Weng Y Y and Dong W 2017 Chin. Phys. 34 028201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|