INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of carrier mobility on performance of perovskite solar cells |
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇) |
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract The high carrier mobility and long diffusion length of perovskite material have been regarded because of its excellent photovoltaic performance. However, many studies have shown that a diffusion length longer than 1 μ and higher carrier mobility have no positive effect on the cells' performance. Studies of organic solar cells have demonstrated the existence of an optimal mobility value, while systematic research of the carrier mobility in the PSCs is very rare. To make these questions clear, the effect of carrier mobility on perovskite solar cells' performance is studied in depth in this paper by simulation. Our study shows that the optimal mobility value of the charge transportation layer and absorption layer are influenced by both doping concentration and layer thickness. The appropriate carrier mobility can reduce the carrier recombination rate and enhance the carrier concentration, thus improving the cells' performance. A high efficiency of 27.39% is obtained in the simulated cell with the combination of the optimized parameters in the paper.
|
Received: 07 November 2018
Revised: 31 January 2019
Accepted manuscript online:
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
88.40.fc
|
(Modeling and analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61704147) and the Science Fund from the Education Department of Hebei Province, China (Grant No. QN2017150). |
Corresponding Authors:
Hui-Jing Du, Chun-Yu Zhou
E-mail: Hjdu@ysu.edu.cn;zhouchunyu@ysu.edu.cn
|
Cite this article:
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇) Effect of carrier mobility on performance of perovskite solar cells 2019 Chin. Phys. B 28 048802
|
[1] |
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M and Park N G 2012 Sci. Rep. 2 591
|
[2] |
Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
|
[3] |
Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J and Seo J 2018 Nat. Energy 3 682
|
[4] |
Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M and White T J 2013 J. Mater. Chem. A 1 5628
|
[5] |
Phillips L J, Rashed A M, Treharne R E, Kay J, Yates P, Mitrovic I Z, Weerakkody A, Hall S and Durose K 2016 Sol. Energy Mater. Sol. Cells 147 327
|
[6] |
Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
|
[7] |
Zhao Y, Nardes A M and Zhu K 2014 J. Phys. Chem. Lett. 5 490
|
[8] |
Takahashi Y, Hasegawa H, Takahashi Y and Inabe T 2013 J. Solid State Chem. 205 39
|
[9] |
Ponseca C S, Jr., Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P and Sundstrom V 2014 J. Am. Chem. Soc. 136 5189
|
[10] |
Huang L, Sun X, Li C, Xu R, Xu J, Du Y, Wu Y, Ni J, Cai H, Li J, Hu Z and Zhang J 2016 Sol. Energy Mater. Sol. Cells 157 1038
|
[11] |
Fu K, Zhou Q, Chen Y, Lu J and Yang S E 2015 J. Opt. 17 105904
|
[12] |
Zhou Y and Gray-Weale A 2016 Phys. Chem. Chem. Phys. 18 4476
|
[13] |
Da Y, Xuan Y and Li Q 2018 Sol. Energy Mater. Sol. Cells 174 206
|
[14] |
Sheikh A D, Bera A, Haque M A, Rakhi R B, Gobbo S D, Alshareef H N and Wu T 2015 Sol. Energy Mater. Sol. Cells 137 6
|
[15] |
Minemoto T and Murata M 2014 J. Appl. Phys. 116 054505
|
[16] |
Kour N, Mehra R and Chandni 2018 Chin. Phys. B 27 018801
|
[17] |
Adhikari K R, Gurung S, Bhattarai B K and Soucase B M 2016 Phys. Status Solidi C 13 13
|
[18] |
Mandoc M M, Koster L J A and Blom P W M 2007 Appl. Phys. Lett. 90 133504
|
[19] |
Deibel C, Wagenpfahl A and Dyakonov V 2008 Phys. Status Solidi-Rapid Res. Lett. 2 175
|
[20] |
Ramírez O, Cabrera V and Reséndiz L M 2014 Opt. Quantum Electron. 46 1291
|
[21] |
Shieh J T, Liu C H, Meng H F, Tseng S R, Chao Y C and Horng S F 2010 J. Appl. Phys. 107 084503
|
[22] |
Du H J, Wang W C and Zhu J Z 2016 Chin. Phys. B 25 108802
|
[23] |
Manser J S, Christians J A and Kamat P V 2016 Chem. Rev. 116 12956
|
[24] |
He Y and Galli G 2017 Chem. Mater. 29 682
|
[25] |
Jiang C S, Yang M, Zhou Y, To B, Nanayakkara S U, Luther J M, Zhou W, Berry J J, Lagemaat J, Padture N P, Zhu K and Al-Jassim M M 2015 Nat. Commun. 6 8397
|
[26] |
Yang G, Ding B, Li Y, Huang S, Chu Q, Li C and Li C 2017 J. Mater. Chem. A 5 6840
|
[27] |
Tan H, Jain A, Voznyy O, Lan X, Arquer F P G, Fan J Z, Bermudez R Q, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogl, S and Sargent E H 2017 Science 355 722
|
[28] |
Shirayama M, Kadowaki H, Miyadera T, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M and Fujiwara H 2016 Phys. Rev. Appl. 5 014012
|
[29] |
Albrecht S, Saliba M, Correa-Baena J P, Jäger K, Korte L, Hagfeldt A, Grätzel M and Rech B 2016 J. Opt. 18 064012
|
[30] |
Alnuaimi A, Almansouri I and Nayfeh A 2016 J. Comput. Electron. 15 1110
|
[31] |
Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I and Snaith H J 2013 Phys. Chem. Chem. Phys. 15 2572
|
[32] |
Leijtens T, Lim J, Teuscher J, Park T and Snaith H J 2013 Adv. Mater. 25 3227
|
[33] |
Toshniwal A, Jariwala A, Kheraj V, Opanasyuk A S and Panchal C J 2017 J. Nano-Electron. Phys. 9 03038
|
[34] |
Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G and Cahen D 2014 Nano Lett. 14 1000
|
[35] |
Liu X, Bu T, Li J, He J, Li T, Zhang J, Li W, Ku Z, Peng Y, Huang F, Cheng Y B and Zhong J 2018 Nano Energy 44 34
|
[36] |
Zhang H, Shi J, Xu X, Zhu L, Luo Y, Li D and Meng Q 2016 J. Mater. Chem. A 4 15383
|
[37] |
Liu D, Li S, Zhang P, Wang Y, Zhang R, Sarvari H, Wang F, Wu J, Wang Z and Chen Z D 2017 Nano Energy 31 462
|
[38] |
Zhou Q, Jiao D, Fu K, Wu X, Chen Y, Lu J and Yang S E 2016 Sol. Energy 123 51
|
[39] |
Iftiquar S M and Yi J 2018 Mater. Sci. Semicond. Process 79 46
|
[40] |
Kavan L and Grätzel M 1995 Electrochim. Acta 40 643
|
[41] |
Momblona C, Malinkiewicz O, Roldán-Carmona C, Soriano A, Gil-Escrig L, Bandiello E, Scheepers M, Edri E and Bolink H J 2014 APL Mater. 2 081504
|
[42] |
Chen J, Zuo L, Zhang Y, Lian X, Fu W, Yan J, Li J, Wu G, Li C Z and Chen H 2018 Adv. Energy Mater. 8 1800438
|
[43] |
Chiang C H and Wu C G 2016 Nat. Photon. 10 196
|
[44] |
Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L and Huang J 2015 Science 347 967
|
[45] |
Koh T M, Krishnamoorthy T, Yantara N, Shi C, Leong W L, Boix P P, Grimsdale A C, Mhaisalkar S G and Mathews N 2015 J. Mater. Chem. A 3 14996
|
[46] |
Bansode U, Naphade R, Game O, Agarkar S and Ogale S 2015 J. Phys. Chem. C 119 9177
|
[47] |
Shao S, Liu J, Portale G, Fang H H, Blake G R, ten Brink G H, Koster L J A and Loi M A 2018 Adv. Energy Mater. 8 1702019
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|