Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 048802    DOI: 10.1088/1674-1056/28/4/048802
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of carrier mobility on performance of perovskite solar cells

Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇)
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  

The high carrier mobility and long diffusion length of perovskite material have been regarded because of its excellent photovoltaic performance. However, many studies have shown that a diffusion length longer than 1 μ and higher carrier mobility have no positive effect on the cells' performance. Studies of organic solar cells have demonstrated the existence of an optimal mobility value, while systematic research of the carrier mobility in the PSCs is very rare. To make these questions clear, the effect of carrier mobility on perovskite solar cells' performance is studied in depth in this paper by simulation. Our study shows that the optimal mobility value of the charge transportation layer and absorption layer are influenced by both doping concentration and layer thickness. The appropriate carrier mobility can reduce the carrier recombination rate and enhance the carrier concentration, thus improving the cells' performance. A high efficiency of 27.39% is obtained in the simulated cell with the combination of the optimized parameters in the paper.

Keywords:  perovskite solar cells      device simulation      carrier mobility      photovoltaic performance  
Received:  07 November 2018      Revised:  31 January 2019      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  88.40.fc (Modeling and analysis)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61704147) and the Science Fund from the Education Department of Hebei Province, China (Grant No. QN2017150).

Corresponding Authors:  Hui-Jing Du, Chun-Yu Zhou     E-mail:  Hjdu@ysu.edu.cn;zhouchunyu@ysu.edu.cn

Cite this article: 

Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇) Effect of carrier mobility on performance of perovskite solar cells 2019 Chin. Phys. B 28 048802

[1] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M and Park N G 2012 Sci. Rep. 2 591
[2] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[3] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J and Seo J 2018 Nat. Energy 3 682
[4] Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M and White T J 2013 J. Mater. Chem. A 1 5628
[5] Phillips L J, Rashed A M, Treharne R E, Kay J, Yates P, Mitrovic I Z, Weerakkody A, Hall S and Durose K 2016 Sol. Energy Mater. Sol. Cells 147 327
[6] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
[7] Zhao Y, Nardes A M and Zhu K 2014 J. Phys. Chem. Lett. 5 490
[8] Takahashi Y, Hasegawa H, Takahashi Y and Inabe T 2013 J. Solid State Chem. 205 39
[9] Ponseca C S, Jr., Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P and Sundstrom V 2014 J. Am. Chem. Soc. 136 5189
[10] Huang L, Sun X, Li C, Xu R, Xu J, Du Y, Wu Y, Ni J, Cai H, Li J, Hu Z and Zhang J 2016 Sol. Energy Mater. Sol. Cells 157 1038
[11] Fu K, Zhou Q, Chen Y, Lu J and Yang S E 2015 J. Opt. 17 105904
[12] Zhou Y and Gray-Weale A 2016 Phys. Chem. Chem. Phys. 18 4476
[13] Da Y, Xuan Y and Li Q 2018 Sol. Energy Mater. Sol. Cells 174 206
[14] Sheikh A D, Bera A, Haque M A, Rakhi R B, Gobbo S D, Alshareef H N and Wu T 2015 Sol. Energy Mater. Sol. Cells 137 6
[15] Minemoto T and Murata M 2014 J. Appl. Phys. 116 054505
[16] Kour N, Mehra R and Chandni 2018 Chin. Phys. B 27 018801
[17] Adhikari K R, Gurung S, Bhattarai B K and Soucase B M 2016 Phys. Status Solidi C 13 13
[18] Mandoc M M, Koster L J A and Blom P W M 2007 Appl. Phys. Lett. 90 133504
[19] Deibel C, Wagenpfahl A and Dyakonov V 2008 Phys. Status Solidi-Rapid Res. Lett. 2 175
[20] Ramírez O, Cabrera V and Reséndiz L M 2014 Opt. Quantum Electron. 46 1291
[21] Shieh J T, Liu C H, Meng H F, Tseng S R, Chao Y C and Horng S F 2010 J. Appl. Phys. 107 084503
[22] Du H J, Wang W C and Zhu J Z 2016 Chin. Phys. B 25 108802
[23] Manser J S, Christians J A and Kamat P V 2016 Chem. Rev. 116 12956
[24] He Y and Galli G 2017 Chem. Mater. 29 682
[25] Jiang C S, Yang M, Zhou Y, To B, Nanayakkara S U, Luther J M, Zhou W, Berry J J, Lagemaat J, Padture N P, Zhu K and Al-Jassim M M 2015 Nat. Commun. 6 8397
[26] Yang G, Ding B, Li Y, Huang S, Chu Q, Li C and Li C 2017 J. Mater. Chem. A 5 6840
[27] Tan H, Jain A, Voznyy O, Lan X, Arquer F P G, Fan J Z, Bermudez R Q, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogl, S and Sargent E H 2017 Science 355 722
[28] Shirayama M, Kadowaki H, Miyadera T, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M and Fujiwara H 2016 Phys. Rev. Appl. 5 014012
[29] Albrecht S, Saliba M, Correa-Baena J P, Jäger K, Korte L, Hagfeldt A, Grätzel M and Rech B 2016 J. Opt. 18 064012
[30] Alnuaimi A, Almansouri I and Nayfeh A 2016 J. Comput. Electron. 15 1110
[31] Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I and Snaith H J 2013 Phys. Chem. Chem. Phys. 15 2572
[32] Leijtens T, Lim J, Teuscher J, Park T and Snaith H J 2013 Adv. Mater. 25 3227
[33] Toshniwal A, Jariwala A, Kheraj V, Opanasyuk A S and Panchal C J 2017 J. Nano-Electron. Phys. 9 03038
[34] Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G and Cahen D 2014 Nano Lett. 14 1000
[35] Liu X, Bu T, Li J, He J, Li T, Zhang J, Li W, Ku Z, Peng Y, Huang F, Cheng Y B and Zhong J 2018 Nano Energy 44 34
[36] Zhang H, Shi J, Xu X, Zhu L, Luo Y, Li D and Meng Q 2016 J. Mater. Chem. A 4 15383
[37] Liu D, Li S, Zhang P, Wang Y, Zhang R, Sarvari H, Wang F, Wu J, Wang Z and Chen Z D 2017 Nano Energy 31 462
[38] Zhou Q, Jiao D, Fu K, Wu X, Chen Y, Lu J and Yang S E 2016 Sol. Energy 123 51
[39] Iftiquar S M and Yi J 2018 Mater. Sci. Semicond. Process 79 46
[40] Kavan L and Grätzel M 1995 Electrochim. Acta 40 643
[41] Momblona C, Malinkiewicz O, Roldán-Carmona C, Soriano A, Gil-Escrig L, Bandiello E, Scheepers M, Edri E and Bolink H J 2014 APL Mater. 2 081504
[42] Chen J, Zuo L, Zhang Y, Lian X, Fu W, Yan J, Li J, Wu G, Li C Z and Chen H 2018 Adv. Energy Mater. 8 1800438
[43] Chiang C H and Wu C G 2016 Nat. Photon. 10 196
[44] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L and Huang J 2015 Science 347 967
[45] Koh T M, Krishnamoorthy T, Yantara N, Shi C, Leong W L, Boix P P, Grimsdale A C, Mhaisalkar S G and Mathews N 2015 J. Mater. Chem. A 3 14996
[46] Bansode U, Naphade R, Game O, Agarkar S and Ogale S 2015 J. Phys. Chem. C 119 9177
[47] Shao S, Liu J, Portale G, Fang H H, Blake G R, ten Brink G H, Koster L J A and Loi M A 2018 Adv. Energy Mater. 8 1702019
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[3] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[4] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[5] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[6] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[7] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[8] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[9] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[10] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[11] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[12] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[13] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[14] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[15] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
No Suggested Reading articles found!