Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018401    DOI: 10.1088/1674-1056/27/1/018401
Special Issue: SPECIAL TOPIC — New generation solar cells
SPECIAL TOPIC—New generation solar cells Prev   Next  

Importance of ligands on TiO2 nanocrystals for perovskite solar cells

Yao Zhao(赵耀), Yi-Cheng Zhao(赵怡程), Wen-Ke Zhou(周文可), Rui Fu(伏睿), Qi Li(李琪), Da-Peng Yu(俞大鹏), Qing Zhao(赵清)
State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
Abstract  The fabrication of high-quality electron-selective layers at low temperature is a prerequisite to realizing efficient flexible and tandem perovskite solar cells (PSCs). A colloidal-quantum-dot ink that contains TiO2 nanocrystals enables the deposition of a flat film with matched energy level for PSCs; however, the selection of ligands on the TiO2 surface is still unexplored. Here, we systematically studied the effect of the titanium diisopropoxide bis(acetylacetonate) (TiAc2) ligand on the performance of PSCs with a planar n-i-p architecture. We prepared TiO2 nanocrystals from TiCl4 and ethyl alcohol with Cl- ligands attached on its surface and we found that a tiny amount of TiAc2 treatment of as-prepared TiO2 nanocrystals in a mixed solution of chloroform and methyl alcohol can enhance PSC power conversion efficiency (PCE) from 14.7% to 18.3%. To investigate the effect of TiAc2 ligand on PSCs, TiO2 samples with different TiAc2 content were prepared by adding TiAc2 into the as-obtained TiO2 nanocrystal solution. We use x-ray photoelectron spectroscopy to identify the content of Cl so as to reveal that Cl ligands can be substituted by TiAc2. We speculate that the improvement in PCE originates from amorphous TiO2 formation on the TiO2 nanocrystal surface, whereby a single-molecule layer of amorphous TiO2 facilitates charge transfer between the perovskite film and the TiO2 electronic transport layer, but excessive TiAc2 lowers the PSC performance dramatically. We further prove our hypothesis by x-ray diffraction measurements. We believe the PCE of PSCs can be further improved by carefully choosing the type and changing the content of surface ligands on TiO2 nanocrystal.
Keywords:  TiAc2      TiO2 nanocrystal      surface ligand      perovskite solar cells  
Received:  27 September 2017      Revised:  21 November 2017      Accepted manuscript online: 
PACS:  84.60.Jt (Photoelectric conversion)  
  88.40.H- (Solar cells (photovoltaics))  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51622201, 61571015, and 91433102).
Corresponding Authors:  Qing Zhao     E-mail:

Cite this article: 

Yao Zhao(赵耀), Yi-Cheng Zhao(赵怡程), Wen-Ke Zhou(周文可), Rui Fu(伏睿), Qi Li(李琪), Da-Peng Yu(俞大鹏), Qing Zhao(赵清) Importance of ligands on TiO2 nanocrystals for perovskite solar cells 2018 Chin. Phys. B 27 018401

[1] Papavassiliou G C 1996 Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 286 231
[2] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M and Han H 2014 Science 345 295
[3] Zhang W, Anaya M, Lozano G, Calvo M E, Johnston M B, Míguez H and Snaith H J 2015 Nano Lett. 15 1698
[4] Hao F, Stoumpos C C, Cao D H, Chang R P H and Kanatzidis M G 2014 Nat. Photon. 8 489
[5] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
[6] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623
[7] Heo J H, Im S H, Noh J H, Mandal T N, Lim C-S, Chang J A, Lee Y H, Kim H J, Sarkar A, NazeeruddinMd K, Gratzel M and Seok S I 2013 Nat. Photon. 7 486
[8] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M and Han L 2015 Science 350 944
[9] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
[10] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[11] Li Y, Cooper J K, Liu W, Sutter-Fella C M, Amani M, Beeman J W, Javey A, Ager J W, Liu Y, Toma F M and Sharp I D 2016 Nat. Commun. 7 12446
[12] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H and Bakr O M 2015 Science 347 519
[13] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M and Park N G 2012 Sci. Rep. 2 591
[14] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[15] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I 2017 Science 356 1376
[16] Cao J, Yin J, Yuan S, Zhao Y, Li J and Zheng N 2015 Nanoscale 7 9443
[17] Lee J W, Kim H S and Park N G 2016 Acc. Chem. Res. 49 311
[18] Wang Z, Xia Y, Chen Y and Huang W 2017 J. Mater. Chem. A 5 12602
[19] Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H and Gratzel M 2015 Nat. Chem. 7 703
[20] Qin C, Matsushima T, Fujihara T and Adachi C 2017 Adv. Mater. 29 1603808
[21] Quan L N, Yuan M, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H and Sargent E H 2016 J. Am. Chem. Soc. 138 2649
[22] Rong Y, Hou X, Hu Y, Mei A, Liu L, Wang P and Han H 2017 Nat. Commun. 8 14555
[23] Si H, Liao Q, Kang Z, Ou Y, Meng J, Liu Y, Zhang Z and Zhang Y 2017 Adv. Function. Mater. 27 1701804
[24] Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T and Han L 2017 Adv. Mater. 29 1701073
[25] Zhang J, Hu Z, Huang L, Yue G, Liu J, Lu X, Hu Z, Shang M, Han L and Zhu Y 2015 Chem. Commun. 51 7047
[26] Zuo C and Ding L 2014 Nanoscale 6 9935
[27] Xu L G, Qiu W, Chen R F, Zhang H M and Huang W 2018 Acta Phys. Chim. Sin. 34 36
[28] You J, Hong Z, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H and Yang Y 2014 ACS Nano 8 1674
[29] Shin S S, Yang W S, Noh J H, Suk J H, Jeon N J, Park J H, Kim J S, Seong W M and Seok S I 2015 Nat. Commun. 6 7410
[30] Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522
[31] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G and Crochet J J 2003 J. Am. Chem. Soc. 125 14539
[32] Docampo P, Ball J M, Darwich M, Eperon G E and Snaith H J 2013 Nat. Commun. 4 2761
[33] Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S and Sargent E H 2017 Science 355 722
[34] Kim I S, Haasch R T, Cao D H, Farha O K, Hupp J T, Kanatzidis M G and Martinson A B F 2016 ACS Appl. Mater. Interf. 8 24310
[35] Wang W G, Zhu L, Weng Y Y and Dong W 2017 Chin. Phys. 34 028201
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[3] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[4] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[5] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[6] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[7] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[8] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[9] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[10] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[11] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[12] Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air
Wei-Kang Xu(许伟康), Feng-Xiang Chen(陈凤翔), Gong-Hui Cao(曹功辉), Jia-Qi Wang(王嘉绮), Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2018, 27(3): 038402.
[13] Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells
Sajid, A M Elseman, Jun Ji(纪军), Shangyi Dou(窦尚轶), Hao Huang(黄浩), Peng Cui(崔鹏), Dong Wei(卫东), Meicheng Li(李美成). Chin. Phys. B, 2018, 27(1): 017305.
[14] O3 fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH3NH3I vapor-assisted processed CH3NH3PbI3 perovskite solar cells
En-Dong Jia(贾恩东), Xi Lou(娄茜), Chun-Lan Zhou(周春兰), Wei-Chang Hao(郝维昌), Wen-Jing Wang(王文静). Chin. Phys. B, 2017, 26(6): 068803.
[15] Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles
Peng Liu(刘鹏), Bing-chu Yang(杨兵初), Gang Liu(刘钢), Run-sheng Wu(吴闰生), Chu-jun Zhang(张楚俊), Fang Wan(万方), Shui-gen Li(李水根), Jun-liang Yang(阳军亮), Yong-li Gao(高永立), Cong-hua Zhou(周聪华). Chin. Phys. B, 2017, 26(5): 058401.
No Suggested Reading articles found!