INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles |
Peng Liu(刘鹏)1, Bing-chu Yang(杨兵初)1, Gang Liu(刘钢)1, Run-sheng Wu(吴闰生)1,3, Chu-jun Zhang(张楚俊)1, Fang Wan(万方)1, Shui-gen Li(李水根)1,3, Jun-liang Yang(阳军亮)1, Yong-li Gao(高永立)1,2, Cong-hua Zhou(周聪华)1 |
1 Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China;
2 Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA;
3 School of New Energy Science and Engineering, Xinyu University, Xinyu 338004, China |
|
|
Abstract Enhancing optical and electrical performances is effective in improving power conversion efficiency of photovoltaic devices. Here, gold and silver dual nanoparticles were imported and embedded in the hole transport layer of perovskite solar cells. Due to the cooperative localized surface plasmon resonance of these two kinds of metal nanostructures, light harvest of perovskite material layer and the electrical performance of device were improved, which finally upgraded short circuit current density by 10.0%, and helped to increase power conversion efficiency from 10.4% to 11.6% under AM 1.5G illumination with intensity of 100 mW/cm2. In addition, we explored the influence of silver and gold nanoparticles on charge carrier generation, dissociation, recombination, and transportation inside perovskite solar cells.
|
Received: 08 January 2017
Revised: 17 February 2017
Accepted manuscript online:
|
PACS:
|
84.60.Jt
|
(Photoelectric conversion)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61306080, 51203192, 11334014, and 51664047), the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ3143), and the Scientific and Technological Project of Hunan Provincial Development and Reform Commission, China. |
Corresponding Authors:
Bing-chu Yang, Cong-hua Zhou
E-mail: bingchuyang@csu.edu.cn;chzhou@csu.edu.cn
|
Cite this article:
Peng Liu(刘鹏), Bing-chu Yang(杨兵初), Gang Liu(刘钢), Run-sheng Wu(吴闰生), Chu-jun Zhang(张楚俊), Fang Wan(万方), Shui-gen Li(李水根), Jun-liang Yang(阳军亮), Yong-li Gao(高永立), Cong-hua Zhou(周聪华) Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles 2017 Chin. Phys. B 26 058401
|
[1] |
Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
|
[2] |
Wang J Z, Huang Q L, Xu X, Quan B G, Luo J H, Zhang Y, Ye J S, Li D M, Meng Q B and Yang G Z 2015 Chin. Phys. B 24 329
|
[3] |
Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L and Huang J 2015 Science 347 967
|
[4] |
Shao Y, Xiao Z, Bi C, Yuan Y and Huang J 2014 Nat. Commun. 5 5784
|
[5] |
Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z and Huang J 2015 Nat. Commun. 6 7747
|
[6] |
Wu R, Yang B, Xiong J, Cao C, Huang Y, Wu F, Sun J, Zhou C, Huang H and Yang J 2015 Renew. Sustain. Ener. 7 043105
|
[7] |
Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
|
[8] |
Yin X, Yao Z, Luo Q, Dai X, Zhou Y, Zhang Y, Luo S, Li J and Wang N 2016 ACS Appl. Mater. Inter. 9 2439
|
[9] |
Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S and Alam M A 2015 Science 347 522
|
[10] |
Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grátzel M 2013 Nature 499 316
|
[11] |
Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
|
[12] |
Docampo P, Ball J M, Darwich M, Eperon G E and Snaith H J 2013 Nat. Commun. 4 2761
|
[13] |
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J and Yang Y 2014 Science 345 295
|
[14] |
Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B and Su G 2016 Sci. Rep. 6 18922
|
[15] |
Wu R, Yang B, Zhang C, Huang Y, Cui Y, Liu P, Zhou C, Hao Y, Gao Y and Yang J 2016 J. Phys. Chem. C 120 6996
|
[16] |
Lee D S, Kim W, Cha B G, Kwon J, Kim S J, Kim M, Kim J, Wang D H and Park J H 2015 ACS Appl. Mater. Inter. 8 449
|
[17] |
Hu Q, Wu H, Sun J, Yan D, Gao Y and Yang J 2016 Nanoscale 8 5350
|
[18] |
Atwater H A and Polman A 2010 Nat. Mater. 9 205
|
[19] |
Brown M D, Suteewong T, Kumar R S S, D'Innocenzo V, Petrozza A, Lee M M, Wiesner U and Snaith H J 2010 Nano Lett. 11 438
|
[20] |
Leijtens T, Ding I K, Giovenzana T, Bloking J T, McGehee M D and Sellinger A 2012 ACS Nano 6 1455
|
[21] |
Wang D H, Park K H, Seo J H, Seifter J, Jeon J H, Kim J K, Park J H, Park O O and Heeger A J 2011 Adv. Ener. Mater. 1 766
|
[22] |
Wang C C, Choy W C, Duan C, Fung D D, Wei E, Xie F X, Huang F and Cao Y 2012 J. Mater. Chem. 22 1206
|
[23] |
Heo M, Cho H, Jung J W, Jeong J R, Park S and Kim J Y 2011 Adv. Mater. 23 5689
|
[24] |
Shalan A E, Oshikiri T, Sawayanagi H, Nakamura K, Ueno K, Sun Q, Wu H P, Diau W G and Misawa H 2016 Nanoscale 9 1229
|
[25] |
Lu L, Luo Z, Xu T and Yu L 2012 Nano Lett. 13 59
|
[26] |
Xiong J, Yang B, Wu R, Cao C, Huang Y, Liu C, Hu Z, Huang H, Gao Y and Yang J 2015 Org. Electron. 24 106
|
[27] |
Wu R, Yang J, Xiong J, Liu P, Zhou C, Huang H, Gao Y and Yang B 2015 Org. Electron. 26 265
|
[28] |
Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B and Spiccia L 2014 Angew. Chem. 126 10056
|
[29] |
Le Ru E, Etchegoin P, Grand J, Félidj N, Aubard J, Lévi G, Hohenau A and Krenn J 2008 Curr. Appl. Phys. 8 467
|
[30] |
Lee J H, Park J H, Kim J S, Lee D Y and Cho K 2009 Org. Electron. 10 416
|
[31] |
Mahmoud M A, Poncheri A J, Phillips R L and El-Sayed M A 2010 J. Am. Chem. Soc. 132 2633
|
[32] |
Li X, Choy W C H, Lu H, Sha W E and Ho A H P 2013 Funct. Mater. 23 2728
|
[33] |
Mihailetchi V, Wildeman J and Blom P 2005 Phys. Rev. Lett. 94 126602
|
[34] |
Mihailetchi V, Koster L, Hummelen J and Blom P 2004 Phys. Rev. Lett. 93 216601
|
[35] |
Shuttle C, Hamilton R, O'Regan B, Nelson J and Durrant J 2010 P. Nat. A. Sci. 107 16448
|
[36] |
Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G and Bisquert J 2013 Nat. Commun. 4 2242
|
[37] |
Liu Z, Shi T, Tang Z, Sun B and Liao G 2016 Nanoscale 8 7017
|
[38] |
Gonzalez-Pedro V, Juarez-Perez E J, Arsyad W S, Barea E M, Fabregat-Santiago F, Mora-Sero I and Bisquert J 2014 Nano Lett. 14 888
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|