Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018501    DOI: 10.1088/1674-1056/27/1/018501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Photon-counting chirped amplitude modulation lidar system using superconducting nanowire single-photon detector at 1550-nm wavelength

Hui Zhou(周慧)1,3, Yu-Hao He(何宇昊)1, Chao-Lin Lü(吕超林)1, Li-Xing You(尤立星)1,3, Zhao-Hui Li(李召辉)2, Guang Wu(吴光)2, Wei-Jun Zhang(张伟君)1, Lu Zhang(张露)1, Xiao-Yu Liu(刘晓宇)1, Xiao-Yan Yang(杨晓燕)1, Zhen Wang(王镇)1
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;
2 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
3 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China
Abstract  

We demonstrate a photon-counting chirped amplitude modulation (CAM) light detection and ranging (lidar) system incorporating a superconducting nanowire single-photon detector (SNSPD) and operated at a wavelength of 1550 nm. The distance accuracy of the lidar system was determined by the CAM bandwidth and signal-to-noise ratio (SNR) of an intermediate frequency (IF) signal. Owing to a short dead time (10 ns) and negligible dark count rate (70 Hz) of the SNSPD, the obtained IF signal attained an SNR of 42 dB and the direct distance accuracy was improved to 3 mm when the modulation bandwidth of the CAM signal was 240 MHz and the modulation period was 1 ms.

Keywords:  photon counting      photodetectors      lidar  
Received:  13 July 2017      Revised:  11 September 2017      Accepted manuscript online: 
PACS:  85.25.Pb (Superconducting infrared, submillimeter and millimeter wave detectors)  
  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
Fund: 

Project supported by National Key R&D Program of China (Grant No. 2017YFA0304000), the National Natural Science Foundation of China (NSFC) (Grant Nos. 61501442 and 61671438), and the Joint Research Fund in Astronomy (U1631240) under Cooperative Agreement between the NSFC and Chinese Academy of Sciences (CAS).

Corresponding Authors:  Li-Xing You     E-mail:  lxyou@mail.sim.ac.cn

Cite this article: 

Hui Zhou(周慧), Yu-Hao He(何宇昊), Chao-Lin Lü(吕超林), Li-Xing You(尤立星), Zhao-Hui Li(李召辉), Guang Wu(吴光), Wei-Jun Zhang(张伟君), Lu Zhang(张露), Xiao-Yu Liu(刘晓宇), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇) Photon-counting chirped amplitude modulation lidar system using superconducting nanowire single-photon detector at 1550-nm wavelength 2018 Chin. Phys. B 27 018501

[1] Schwarz B 2010 Nat. Photon. 4 429
[2] Degnan J J 1985 IEEE Trans. Geosci. Remote Sens. GE-23 398
[3] Hiskett P A, Parry C S, McCarthy A and Buller G S 2008 Opt. Express 16 13685
[4] Krichel N J, McCarthy A and Buller G S 2010 Opt. Express 18 9192
[5] Liang Y, Huang J H, Ren M, Feng B C, Chen X L, Wu E, Wu G and Zeng H P 2014 Opt. Express 22 4662
[6] Redman B, Ruff W and Giza M 2006 Proc. SPIE 6214 62140P
[7] Zhang Z J, Wu L, Zhang Y and Zhao Y 2013 Appl. Opt. 52 274
[8] Zhang Z J, Zhao Y, Zhang Y, Wu L and Su J Z 2013 Appl. Opt. 52 2447
[9] Zhang Z J, Zhang J L, Wu L, Zhang Y, Zhao Y and Su J Z 2013 Opt. Lett. 38 4389
[10] Li Z H, Bao Z Y, Shi Y F, Feng B C, Wu E, Wu G and Zeng H P 2015 IEEE Photon. Technol. Lett. 27 616
[11] Chen S J, Liu D K, Zhang W X, You L X, He Y H, Zhang W J, Yang X Y, Wu G, Ren M, Zeng H P, Wang Z, Xie X M and Jiang M H 2013 Appl. Opt. 52 3241
[12] Zhou H, He Y H, You L X, Chen S J, Zhang W J, Wu J J, Wang Z and Xie X M 2015 Opt. Express 23 14603
[13] McCarthy A, Krichel N J, Gemmell N R, Ren X, Tanner M G, Dorenbos S N, Zwiller V, Hadfield R H and Buller G S 2013 Opt. Express 21 8904
[14] Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y, Liu X Y, Wang Z and Xie X M 2016 Opt. Express 24 3535
[15] Zhang S, Feng Z J, Wu G H, Xue L, Yan X C, Zhang L B, Jia X Q, Wang Z Z, Sun J, Dong G Y, Kang L and Wu P H 2016 Acta Phys. Sin. 65 188501 (in Chinese)
[16] Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P and Xiong Y 2016 Opt. Lett. 41 3848
[17] Gu M, Kang L, Zhang L B, Zhao Q Y, Jia T, Wan C, Xu R Y, Yang X Z and Wu P H 2015 Chin. Phys. Lett. 32 038501
[18] Kerman J, Dauler E A, Keicher W E, Yang J K, Berggren K K, Gol'tsman G and Voronov B 2006 Appl. Phys. Lett. 88 111116
[19] Zhang L, Wan C, Gu M, Xu R, Zhang S, Kang L, Chen J and Wu P 2015 Sci. Bull. 60 1434
[20] Zhang L, Gu M, Jia T, Xu R, Wan C, Kang L, Chen J and Wu P 2014 IEEE Photon. J. 6 6802608
[21] He Y H, Lv C L, Zhang W J, Zhang L, Wu J J, Chen S J, You L X and Wang Z 2015 Chin. Phys. B 24 060303
[22] Karlsson C J and Olsson F Å 1999 Appl. Opt. 38 3376
[23] Yang F, He Y, Shang J H and Chen W B 2009 Appl. Opt. 48 6575
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[3] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[4] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] A scanning distortion correction method based on X- Y galvanometer Lidar system
Bao-Ling Qi(漆保凌), Chun-Hui Wang(王春晖), Dong-Bing Guo(郭东兵), and Bin Zhang(张斌). Chin. Phys. B, 2021, 30(4): 044206.
[7] Dynamic measurement of beam divergence angle of different fields of view of scanning lidar
Qing-Yan Li(李青岩), Shi-Yu Yan(闫诗雨), Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2021, 30(2): 024205.
[8] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[9] High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers
Xiao-Qian Du(杜小倩), Chong Li(李冲), Ben Li(黎奔), Nan Wang(王楠), Yue Zhao(赵越), Fan Yang(杨帆), Kai Yu(余凯), Lin Zhou(周琳), Xiu-Li Li(李秀丽), Bu-Wen Cheng(成步文), Chun-Lai Xue(薛春来). Chin. Phys. B, 2019, 28(6): 064208.
[10] Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors
Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航). Chin. Phys. B, 2019, 28(4): 047804.
[11] Photodetectors based on small-molecule organic semiconductor crystals
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜). Chin. Phys. B, 2019, 28(3): 038102.
[12] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[13] Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots
Jinming Hu(胡津铭), Yuansheng Shi(史源盛), Zhenheng Zhang(张珍衡), Ruonan Zhi(智若楠), Shengyi Yang(杨盛谊), Bingsuo Zou(邹炳锁). Chin. Phys. B, 2019, 28(2): 020701.
[14] Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm
Guo-Dong Sun(孙国栋), Lai-An Qin(秦来安), Zai-Hong Hou(侯再红), Xu Jing(靖旭), Feng He(何枫), Feng-Fu Tan(谭逢富), Si-Long Zhang(张巳龙), Shou-Chuan Zhang(张守川). Chin. Phys. B, 2019, 28(2): 024213.
[15] Thickness-modulated in-plane Bi2O2Se homojunctions for ultrafast high-performance photodetectors
Cheng-Yun Hong(洪成允), Gang-Feng Huang(黄刚锋), Wen-Wen Yao(要文文), Jia-Jun Deng(邓加军), Xiao-Long Liu(刘小龙). Chin. Phys. B, 2019, 28(12): 128502.
No Suggested Reading articles found!