Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 068803    DOI: 10.1088/1674-1056/26/6/068803
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

O3 fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH3NH3I vapor-assisted processed CH3NH3PbI3 perovskite solar cells

En-Dong Jia(贾恩东)1,2, Xi Lou(娄茜)1,3, Chun-Lan Zhou(周春兰)1,2, Wei-Chang Hao(郝维昌)3, Wen-Jing Wang(王文静)1,2
1 The Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences(UCAS), Beijing 100049, China;
3 Department of Physics and Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Beihang University, Beijing 100191, China
Abstract  We demonstrate a simple and fast post-deposition treatment with high process compatibility on the hole transport material (HTM) Spiro-MeOTAD in vapor-assisted solution processed methylammonium lead triiodide (CH3NH3PbI3)-based solar cells. The prepared Co-doped p-type Spiro-MeOTAD films are treated by O3 at room temperature for 5 min, 10 min, and 20 min, respectively, prior to the deposition of the metal electrodes. Compared with the traditional oxidation of Spiro-MeOTAD films overnight in dry air, our fast O3 treatment of HTM at room temperature only needs just 10 min, and a relative 40.3% increment in the power conversion efficiency is observed with respect to the result of without-treated perovskite solar cells. This improvement of efficiency is mainly attributed to the obvious increase of the fill factor and short-circuit current density, despite a slight decrease in the open-circuit voltage. Ultraviolet photoelectron spectroscopy (UPS) and Hall effect measurement method are employed in our study to determine the changes of properties after O3 treatment in HTM. It is found that after the HTM is exposed to O3, its p-type doping level is enhanced. The enhancement of conductivity and Hall mobility of the film, resulting from the improvement in p-doping level of HTM, leads to better performances of perovskite solar cells. Best power conversion efficiencies (PCEs) of 13.05% and 16.39% are achieved with most properly optimized HTM via CH3NH3I vapor-assisted method and traditional single-step method respectively.
Keywords:  perovskite solar cells      Spiro-MeOTAD      simple      O3 treatment  
Received:  19 December 2016      Revised:  10 February 2017      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51472016 and 51272015).
Corresponding Authors:  Chun-Lan Zhou, Wei-Chang Hao     E-mail:  chunlzhou@gmail.com;whao@buaa.edu.cn

Cite this article: 

En-Dong Jia(贾恩东), Xi Lou(娄茜), Chun-Lan Zhou(周春兰), Wei-Chang Hao(郝维昌), Wen-Jing Wang(王文静) O3 fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH3NH3I vapor-assisted processed CH3NH3PbI3 perovskite solar cells 2017 Chin. Phys. B 26 068803

[1] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623
[2] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photon. 8 506
[3] Kim H S, Im S H and Park N G 2014 J. Phys. Chem. C 118 5615
[4] Boix P P, Nonomura K, Mathews N and Mhaisalkar S G 2014 Mater. Today 17 16
[5] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 982
[6] Im J H, Lee C R, Lee J W, Park S W and Park N G 2011 Nanoscale 3 4088
[7] Mitzi D B 1999 Progress in Inorganic Chemistry, Vol. 48, Karlin K D ed. (New York: John Wiley & Sons Inc.) pp. 1-121
[8] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Hertz L M, Petrozza A and Snaith H J 2013 Science 342 341
[9] Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
[10] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[11] Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chem. 52 pp. 9019-9038
[12] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[13] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S 2015 Science 348 1234
[14] Wu Y, Yang X, Chen H, Zhang K, Qin C, Liu J, Peng W Q, Islam A, Bi E B and Ye F 2014 Appl. Phys. Express 7 052301
[15] Ball J M, Lee M M, Hey A and Snaith H J 2013 Energy Environ. Sci. 6 1739
[16] Im J H, Jang I H, Pellet N, Gratzel M and Park N G 2014 Nat. Nanotechnol. 9 927
[17] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J and Gupta G 2015 Science 347 522
[18] Abu Laban W and Etgar L 2013 Energy Environ. Sci. 6 3249
[19] Liu D, Yang J and Kelly T L 2014 J. Am. Chem. Soc. 136 17116
[20] Gonzalez-Pedro V, Juarez-Perez E J, Arsyad W S, Barea E M, Fabregat-Santiago F and Mora-Sero I 2014 Nano. Lett. 14 888
[21] Sum T C and Mathews N 2014 Energy Environ. Sci. 7 2518
[22] Zhang H, Shi Y T, Yan F, Wang L, Wang K, Xing Y J, Donga Q S and Ma T L 2014 Chem. Commun. 50 5020
[23] Schölin R, Karlsson M H, Eriksson S K, Siegbahn H, Johansson E M J and Rensmo H 2012 J. Phys. Chem. C 116 26300
[24] Ren Z W, Ng A, Shen Q, Gokkaya H C, Wang J, Yang L J, Yiu W K, Bai G X, Djurisic A B and Leung W W F 2014 Sci. Rep. 4 6752
[25] Chen H W, Sakai N, Ikegami M and Miyasaka T 2015 J. Phys. Chem. Lett. 6 164
[26] Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y S, Li G and Yang Y 2014 J. Am. Chem. Soc. 136 622
[27] Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M and White T J 2013 J. Mater. Chem. A 1 5628
[28] Nie W Y, Tsai H H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S and Alam M A 2015 Science 347 522
[29] Cappel U B, Daeneke T and Bach U 2012 Nano. Lett. 12 4925
[30] Leijtens T, Lim J, Teuscher J, Park T and Snaith H J 2013 Adv. Mater. 25 3227
[31] Servaites J D, Yeganeh S, Marks T J and Ratner M A 2010 Adv. Funct. Mater. 20 97
[32] Wang T Y, Cheng J W, Wu G X and Li M C 2016 Sci. China-Mater. 59 703
[33] Song D D, Cui P, Wang T Y, Wei D, Li M C, Cao F H, Yue X P, Fu P F, Li Y Y and He Y 2015 J. Phys. Chem. C 119 22812
[34] Song D D, Wei D, Cui P, Li M, Duan Z Q, Wang T Y, Ji J, Li Y Y, Jbengue J M, Li Y F, He Y, Trevor M and Park N G 2016 J. Mater. Chem. A 4 6091
[35] Zhang Z R, Yue X P, Wei D, Li M C, Fu P F, Xie B X, Song D D and Li Y F 2015 RSC Adv. 5 104606
[36] Wei D, Ji J, Song D D, Li M C, Cui P, Li Y Y, Mbengue J M, Zhou W J, Ning Z J and Park N G 2017 J. Mater. Chem. A 5 1406
[37] Cui P, Fu P F, Wei D, Li M C, Song D D, Yue X P, Li Y Y, Zhang Z R, Li Y F and Mbengue J M 2015 RSC Adv. 5 75622
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[3] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[4] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[5] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[6] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[7] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[8] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[9] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[10] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[11] Existence of spontaneous symmetry breaking in two-lane totally asymmetric simple exclusion processes with an intersection
Bo Tian(田波), Ping Xia(夏萍), Li Liu(刘莉), Meng-Ran Wu(吴蒙然), Shu-Yong Guo(郭树勇). Chin. Phys. B, 2020, 29(5): 050505.
[12] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[13] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[14] Molecular-dynamics investigation of the simple droplet critical wetting behavior at a stripe pillar edge defect
Xiaolong Liu(刘小龙), Chengyun Hong(洪成允), Yong Ding(丁勇), Xuepeng Liu(刘雪朋), Jianxi Yao(姚建曦), Songyuan Dai(戴松元). Chin. Phys. B, 2019, 28(1): 014703.
[15] Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air
Wei-Kang Xu(许伟康), Feng-Xiang Chen(陈凤翔), Gong-Hui Cao(曹功辉), Jia-Qi Wang(王嘉绮), Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2018, 27(3): 038402.
No Suggested Reading articles found!