Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017305    DOI: 10.1088/1674-1056/27/1/017305
Special Issue: SPECIAL TOPIC — New generation solar cells
SPECIAL TOPIC—New generation solar cells Prev   Next  

Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells

Sajid1, A M Elseman1,2, Jun Ji(纪军)1, Shangyi Dou(窦尚轶)1, Hao Huang(黄浩)1, Peng Cui(崔鹏)1, Dong Wei(卫东)1, Meicheng Li(李美成)1
1 State Key Laboratory of Alternate Electrical Power, System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206, China;
2 Electronic & Magnetic Materials Department, Advanced Materials Division, Central Metallurgical Research and Development Institute(CMRDI), Helwan, Cairo 11421, Egypt
Abstract  A depth behavioral understanding for each layer in perovskite solar cells (PSCs) and their interfacial interactions as a whole has been emerged for further enhancement in power conversion efficiency (PCE). Herein, NiO@Carbon was not only simulated as a hole transport layer but also as a counter electrode at the same time in the planar heterojunction based PSCs with the program wxAMPS (analysis of microelectronic and photonic structures)-1D. Simulation results revealed a high dependence of PCE on the effect of band offset between hole transport material (HTM) and perovskite layers. Meanwhile, the valence band offset (Δ Ev) of NiO-HTM was optimized to be -0.1 to -0.3 eV lower than that of the perovskite layer. Additionally, a barrier cliff was identified to significantly influence the hole extraction at the HTM/absorber interface. Conversely, the Δ Ev between the active material and NiO@Carbon-HTM was derived to be -0.15 to 0.15 eV with an enhanced efficiency from 15% to 16%.
Keywords:  hole transporting materials      counter electrode      perovskite solar cells      simulation  
Received:  14 October 2017      Revised:  18 October 2017      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the National High-tech Research and Development Program of China (Grant No. 2015AA034601), the National Natural Science Foundation of China (Grant Nos. 51772096, 91333122, 51372082, 51402106, and 11504107), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20130036110012), the Par-Eu Scholars Program, Beijing Municipal Science and Technology Project, China (Grant No. Z161100002616039), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. 2016JQ01, 2015ZZD03, 2015ZD07, and 2017ZZD02).
Corresponding Authors:  Meicheng Li     E-mail:

Cite this article: 

Sajid, A M Elseman, Jun Ji(纪军), Shangyi Dou(窦尚轶), Hao Huang(黄浩), Peng Cui(崔鹏), Dong Wei(卫东), Meicheng Li(李美成) Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells 2018 Chin. Phys. B 27 017305

[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[3] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H and Moser J E 2012 Sci. Rep. 2
[4] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M 2013 Nature 499 316
[5] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[6] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S and Seok S I 2014 Nat. Mater. 13 897
[7] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476
[8] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
[9] Yuan X Z, Chao W and Shi H 2017 Chin. Phys. Lett. 34 047304
[10] Yao J, Wei Q, Ma Q Y and Wu D J 2017 Chin. Phys. B 26 057302
[11] Zeng H D, Zhu Z Y, Zhang J D and Cheng X L 2017 Chin. Phys. B 26 056101
[12] Liu P, Yang B C, Liu G, Wu R S, Zhang C J, Wang F, Li S G, Yang J L, Gao Y L and Zhou C H 2017 Chin. Phys. B 26 058401
[13] Rashad M M, Elseman A M and Hassan A M 2016 Optik-International Journal for Light and Electron Optics 127 9775
[14] Yan W, Ye S, Li Y, Sun W, Rao H, Liu Z, Bian Z and Huang C 2016 Adv. Energy Mater. 6 17
[15] Li M H, Shen P S, Wang K C, Guo T F and Chen P 2015 J. Mater. Chem. A 3 9011
[16] Yang L Cai F Yan Y Li J Liu D Pearson A J and Wang T 2017 Adv. Function. Mater.
[17] Zhao D, Sexton M, Park H Y, Baure G, Nino J C and So F 2015 Adv. Energy Mater. 5 6
[18] Zuo C and Ding L 2015 Small 11 5528
[19] Elseman A M, Rashad M M and Hassan A M 2016 ACS Sustainable Chemistry & Engineering 4 4875
[20] Zhang J, Gu P, Xu J, Xue H and Pang H 2016 Nanoscale 8 18578
[21] Chen W, Xu L, Feng X, Jie J and He Z 2017 Adv. Mater. 29 16
[22] Rao H, Ye S, Sun W, Yan W, Li Y, Peng H, Liu Z, Bian Z, Li Y and Huang C 2016 Nano Energy 27 51
[23] Trifiletti V, Roiati V, Colella S, Giannuzzi R, De Marco L, Rizzo A, Manca M, Listorti A and Gigli G 2015 ACS Applied Materials & Interfaces 7 4283
[24] Cao K, Zuo Z, Cui J, Shen Y, Moehl T, Zakeeruddin S M, Grätzel M and Wang M 2015 Nano Energy 17 171
[25] Park J H, Seo J, Park S, Shin S S, Kim Y C, Jeon N J, Shin H W, Ahn T K, Noh J H and Yoon S C 2015 Adv. Mater. 27 4013
[26] Cui J, Meng F, Zhang H, Cao K, Yuan H, Cheng Y, Huang F and Wang M 2014 ACS Appl. Mater. Interf. 6 22862
[27] Wang K C, Shen P S, Li M H, Chen S, Lin M W, Chen P and Guo T F 2014 ACS Appl. Mater. Interf. 6 11851
[28] Liu Z, Zhang M, Xu X, Cai F, Yuan H, Bu L, Li W, Zhu A, Zhao Z and Wang M 2015 J. Mater. Chem. A 3 24121
[29] Yin X, Liu J, Ma J, Zhang C, Chen P, Que M, Yang Y, Que W, Niu C and Shao J 2016 J. Power Sources 329 398
[30] Cui J, Li P, Chen Z, Cao K, Li D, Han J, Shen Y, Peng M, Fu Y Q and Wang M 2016 Appl. Phys. Lett. 109 171103
[31] Kwon U, Kim B G, Nguyen D C, Park J H, Ha N Y, Kim S J, Ko S H, Lee S, Lee D and Park H J 2016 Sci. Rep. 6 30759
[32] Subbiah A S, Halder A, Ghosh S, Mahuli N, Hodes G and Sarkar S K 2014 J. Phys. Chem. Lett. 5 1748
[33] Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C and Hsu Y J 2014 Adv. Mater. 26 4107
[34] Hu L, Peng J, Wang W, Xia Z, Yuan J, Lu J, Huang X, Ma W, Song H and Chen W 2014 Acs Photon. 1 547
[35] Hou Y, Chen W, Baran D, Stubhan T, Luechinger N A, Hartmeier B, Richter M, Min J, Chen S and Quiroz C O R 2016 Adv. Mater. 28 5112
[36] Yin X, Chen P, Que M, Xing Y, Que W, Niu C and Shao J 2016 ACS Nano 10 3630
[37] You J, Meng L, Song T B, Guo T F, Chang W H, Hong Z, Chen H, Zhou H, Chen Q and Liu Y 2016 Nat. Nanotech. 11 75
[38] Seo S, Park I J, Kim M, Lee S, Bae C, Jung H S, Park N G, Kim J Y and Shin H 2016 Nanoscale 8 11403
[39] Corani A, Li M H, Shen P S, Chen P, Guo T F, El Nahhas A, Zheng K, Yartsev A, Sundström V and Ponseca Jr C S 2016 J. Phys. Chem. Lett. 7 1096
[40] Chen W, Zhu Y, Yu Y, Xu L, Zhang G and He Z 2016 Chem. Mater. 28 4879
[41] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I and Grätzel M 2015 Science 350 944
[42] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K and He Z B 2017 Adv. Energy Mater.
[43] Liu Z, Zhu A, Cai F, Tao L, Zhou Y, Zhao Z, Chen Q, Cheng Y B and Zhou H 2017 J. Mater. Chem. A 5 6597
[44] Lany S, Osorio-Guillén J and Zunger A 2007 Phys. Rev. B 75 241203
[45] Zhang K H, Xi K, Blamire M G and Egdell R G 2016 J. Phys.: Conden. Matter 28 383002
[46] Jung J W, Chueh C C and Jen A K Y 2015 Adv. Mater. 27 7874
[47] Yang Z, Chueh C C, Liang P W, Crump M, Lin F, Zhu Z and Jen A K Y 2016 Nano Energy 22 328
[48] Rajagopal A, Williams S T, Chueh C C and Jen A K Y 2016 J. Phys. Chem. Lett. 7 995
[49] Natu G, Hasin P, Huang Z, Ji Z, He M and Wu Y 2012 ACS Appl. Mater. Interf. 4 5922
[50] Liu M H, Zhou Z J, Zhang P P, Tian Q W, Zhou W H, Kou D X and Wu S X 2016 Opt. Express 24 A1349
[51] Elseman A, Shalan A, Rashad M and Hassan A 2017 Mater. Sci. Semicond. Process. 66 176
[52] Son M K, Steier L, Schreier M, Mayer M T, Luo J and Grätzel M 2017 Energy & Environmental Science 10 912
[53] Sato K, Kim S, Komuro S and Zhao X 2016 Jpn J. Appl. Phys. 55 06GJ10
[54] Vahini R, Kumar P S and Karuthapandian S 2016 Appl. Phys. A 122 1
[55] Wang M, Han J, Hu Y, Guo R and Yin Y 2016 ACS Appl. Mater. Interf. 8 29511
[56] Yang X, Wu G, Zhu C, Zou W, Gao Y, Tian J and Zheng Z 2016 J. Colloid Interface Science 469 287
[57] Akhtar N, El-Safty S A, Abdelsalam M E and Kawarada H 2015 Adv. Healthcare Mater. 4 2110
[58] Litzov I and Brabec C J 2013 Materials 6 5796
[59] Liu F, Zhu J, Wei J, Li Y, Lv M, Yang S, Zhang B, Yao J and Dai S 2014 Appl. Phys. Lett. 104 253508
[60] Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K and Johnston M B 2014 Energy & Environmental Science 7 3061
[61] Wehrenfennig C, Liu M, Snaith H J, Johnston M B and Herz L M 2014 Energy & Environmental Science 7 2269
[62] Wang Y Xia Z Liu Y and Zhou H 2015 Simulation of Perovskite Solar Cells with Inorganic Hole Transporting Materials. In Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, p. 1
[63] Cuiffi J, Benanti T, Nam W J and Fonash S 2010 Appl. Phys. Lett. 96 73
[64] Kemp K W, Labelle A J, Thon S M, Ip A H, Kramer I J, Hoogland S and Sargent E H 2013 Adv. Energy Mater. 3 917
[65] Wang T, Chen J, Wu G, Song D and Li M 2017 Journal of Semiconductors 38 014005
[66] Wang T, Chen J, Wu G and Li M 2016 Sci. China Mater. 59 703
[67] Boussettine A, Belhadji Y and Benmansour A 2012 Energy Procedia 18 693
[68] Gao M W, Ye C, Wang X Y, He Y S, Guo J M and Yang P F 2016 Chin. Phys. B 25 075202
[69] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J and Herz L M 2014 Adv. Mater. 26 1584
[70] Bi D, Yang L, Boschloo G, Hagfeldt A and Johansson E M 2013 J. Phys. Chem. Lett. 4 1532
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[7] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[10] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[13] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[14] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[15] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
No Suggested Reading articles found!