Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 016703    DOI: 10.1088/1674-1056/27/1/016703
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A combined system for generating a uniform magnetic field and its application in the investigation of Efimov physics

Rui Yao(姚睿)1,2, Zhen-Dong Sun(孙震东)1,2, Shu-Yu Zhou(周蜀渝)1, Ying Wang(王颖)3, Yu-Zhu Wang(王育竹)1
1 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Department of Physics, University of Science and Technology of China, Hefei 230026, China;
3 School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract  We propose a scheme to produce a uniform magnetic field with a system comprising a pair of coils and an atom chip. After optimizing the parameters of the chip wires, we improve the homogeneity of the magnetic field by two orders of magnitude. We exhibit that this method can be applied in the investigation of Efimov physics in 87Rb-40K mixture.
Keywords:  magnetic field      atom chip      Feshbach resonances      Efimov effect  
Received:  23 August 2017      Accepted manuscript online: 
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  07.55.Db (Generation of magnetic fields; magnets)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674338, 11791240178, and 11547024) and Innovation Training Programs for Undergraduates, Chinese Academy of Sciences (Grant No. KCJH-80140-2016-018).
Corresponding Authors:  Shu-Yu Zhou, Ying Wang     E-mail:  syz@siom.ac.cn;wangying@just.edu.cn

Cite this article: 

Rui Yao(姚睿), Zhen-Dong Sun(孙震东), Shu-Yu Zhou(周蜀渝), Ying Wang(王颖), Yu-Zhu Wang(王育竹) A combined system for generating a uniform magnetic field and its application in the investigation of Efimov physics 2018 Chin. Phys. B 27 016703

[1] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[2] Wang P J, Fu Z K, Chai S J and Zhang J 2011 Chin. Phys. B 20 103401
[3] Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A and Wieman C E 2001 Nature 412 295
[4] Kurita Y and Morinari T 2007 Phys. Rev. A 76 053603
[5] Wang Y, Zhou Y and Zhou S Y 2016 Sci. Rep. 6 38512
[6] Regal C A, Ticknor C, Bohn J L and Jin D S 2003 Nature 424 47
[7] Efimov V 1970 Phys. Lett. B 33 563
[8] Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Näger H C and Grimm R 2006 Nature 440 315
[9] Barontini G, Weber C, Rabatti F, Catani J, Thalhammer G, Inguscio M and Minardi F 2009 Phys. Rev. Lett. 103 043201
[10] Crosser M S, Scott S, Clark A and Wilt P M 2010 Rev. Sci. Instr. 81 084701
[11] Ginsberg D M and Melchner M J 1970 Rev. Sci. Instr. 41 122
[12] Zhou S Y, Qian J, Zhang S C and Wang Y Z 2016 Chin. Opt. Lett. 14 070202
[13] Bergeman T, Erez G and Metcalf H J 1987 Phys. Rev. A 35 1535
[14] Folman R, Krueger P, Schmiedmayer J, Denschlag J and Henkel C 2002 Adv. At. Mol. Opt. 48 263
[15] Yan B, Cheng F, Ke M, Li X L, Tang J Y and Wang Y Z 2009 Chin. Phys. B 18 4259
[16] Salim E A, DeNatale J, Farkas D M, Hudek K M, McBride S E, Michalchuk J, Mihailovich R and Anderson D Z 2011 Quantum Inf. Process 10 975
[17] Xu Q F, Liu H, Lu B Q, Wang Y B, Yin M J, Kong D H, Ren J, Tian X and Chang H 2015 Chin. Opt. Lett. 13 100201
[18] Zhu S B, Qian J and Wang Y Z 2017 Chin. Opt. Lett. 15 060202
[19] Bloom R S, Hu M G, Cumby T D and Jin D S 2013 Phys. Rev. Lett. 111 106301
[20] Hu M G, Bloom R S, Jin D S and Goldwin J M 2014 Phys. Rev. A 90 013619
[21] D'Incao J P, Suno H and Esry B D 2004 Phys. Rev. Lett. 93 123201
[22] Johansen J, DeSalvo B J, Patel K and Chin C 2017 Nat. Phys. 13 731
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[4] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[5] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[10] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[11] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[12] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[13] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[14] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[15] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
No Suggested Reading articles found!