ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification |
Ji Wang(王佶)1, Yanqing Zheng(郑燕青)2, and Yunlin Chen(陈云琳)1,† |
1 Institute of Applied Mic-Nano Materials, School of Science, Beijing Jiaotong University, Beijing 100044, China; 2 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China |
|
|
Abstract Optical parametric chirped pulse amplification (OPCPA) shows great potential in producing ultrashort high-intensity pulses because of its large gain bandwidth. Quasi-parametric chirped pulse amplification (QPCPA) may further extend the bandwidth. However, behavior of QPCPA at a limited pump intensity (e.g., ≤ 5 GW/cm2 in a nanosecond pumped QPCPA) has not yet been investigated fully. We discuss detailedly the ultra-broadband amplification and the noncollinear phase-matching geometry in QPCPA, model and develop a novel noncollinear geometry in QPCPA, namely triple-wavelength phase-matching geometry, which provides two additional phase-matching points around the phase-matching point at the central wavelength. Our analysis demonstrates that the triple-wavelength phase-matching geometry can support stable, ultra-broadband amplification in QPCPA. The numerical simulation results show that ultrashort pulse with a pulse duration of 7.92 fs can be achieved in QPCPA when the pump intensity is limited to 5 GW/cm2, calculated using the nonlinear coefficient of YCa4O(BO3)3.
|
Received: 21 October 2021
Revised: 04 November 2021
Accepted manuscript online:
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Yj
|
(Optical parametric oscillators and amplifiers)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.51832009) and the Fundamental Research Funds for the Central Universities,China (Grant No.2019YJS209). |
Corresponding Authors:
Yunlin Chen,E-mail:ylchen@bjtu.edu.cn
E-mail: ylchen@bjtu.edu.cn
|
About author: 2021-11-17 |
Cite this article:
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳) Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification 2022 Chin. Phys. B 31 054213
|
[1] Li W, Gan Z B, Yu L H, Wang C, Liu Y, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang J Y, Huang P, Cao H, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X and Xu Z Z 2018 Opt. Lett. 43 5681 [2] Doria D, Cernaianu M O, Ghenuche P, Stutman D, Tanaka K A, Ticos C and Ur C A 2020 J. Instrum. 15 C09053 [3] Garrec B L, Papadopoulos D N, Blanc C L, Zou J P, Chériaux G, Georges P, Druon F, Martin L, Fréneaux L, Beluze A, Lebas N, Mathieu F and Audebert P 2017 Proc. SPIE 10238 102380Q [4] Zeng X M, Zhou K N, Zuo Y L, Zhu Q H, Su J Q, Wang X, Wang X D, Huang X J, Jiang X J, Jiang D B, Guo Y, Xie N, Zhou S, Wu Z H, Mu J, Peng H and Jing F 2017 Opt. Lett. 42 2014 [5] Liang X, Xie X L, Zhang C, Kang J, Yang Q W, Zhu P, Guo A L, Zhu H D, Yang S H, Cui Z R, Sun M Z and Zhu J Q 2018 Opt. Lett. 43 5713 [6] Galletti M, Oliveira P, Galimberti M, Ahmad M, Archipovaite G, Booth N, Dilworth E, Frackiewicz A, Winstone T, Musgrave I and Hernandez-Gomez C 2020 High Power Laser Sci. Eng. 8 e4 [7] Lee H W, Kim Y G, Yoo J Y, Lee S K, Yang J M, Son Y J and Sung J H 2020 Opt. Commun. 460 125125 [8] Skrobol C, Ahmad I, Klingebiel S, Wandt C, Trushin S A, Major Z, Krausz F and Karsch S 2012 Opt. Express 20 4619 [9] Xu L, Yu L H, Chu Y X, Gan Z B, Liang X Y, Liu R X and Xu Z Z 2015 Chin. Phys. B 24 018704 [10] Ma J G, Wang J, Yuan P, Xie G Q, Xiong K N, Tu Y F, Tu X N, Shi E W, Zheng Y Q and Qian L J 2015 Optica 2 1006 [11] Ma J G, Wang J, Zhou B J, Yuan P, Xie G Q, Xiong K N, Zheng Y Q, Zhu H Y and Qian L J 2017 Opt. Express 25 25149 [12] Yin Z, Ma J G, Wang J, Yuan P, Xie G Q and Qian L J 2019 IEEE Photon. J. 11 1503612 [13] Wang J, Chen Y L, Zhao K and Wei Z Y 2021 Phys. Rev. A 103 063513 [14] Bhar G C, Chaudhary A K, Kumbhakar P, Rudra A W and Sabarwal S C 2004 Opt. Mater. 27 119 [15] Tu X N, Wang S, Xiong K N, Zheng Y Q and Shi E W 2020 J. Cryst. Growth 535 125527 [16] Tu X N, Xiong K N, Wang S, Zheng Y Q and Shi E W 2020 J. Cryst. Growth 535 125543 [17] Dabu R 2010 Opt. Express 18 11689 [18] Zhao W, Liu H J, Wang Y S, Wang H Y, Chen Z and Chen G F 2005 Chin. phys. 14 359 [19] Dorrer C, Begishev I A, Bahk S W and Bromage J 2021 Opt. Mater. Express 11 774 [20] Pires H, Galimberti M and Figueira G 2014 J. Opt. Soc. Am. B-Opt. Phys. 31 2608 [21] Yang S H, Liang X, Xie X L, Yang Q W, Tu X N, Zheng Y Q, Zhang X Q, Zhang Y, Guo A L, Zhu P, Kang J, Sun M Z and Zhu J Q 2020 Opt. Express 28 11645 [22] He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X and Wei Z Y 2017 Opt. Lett. 42 474 [23] Zhou B J, Ma J G, Wang J, Tang D L, Xie G Q, Yuan P, Zhu H Y and Qian L J 2017 Phys. Rev. A 95 033841 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|