Special Issue:
SPECIAL TOPIC — New generation solar cells
|
SPECIAL TOPIC—New generation solar cells |
Prev
Next
|
|
|
Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer |
Shuaipu Zang(臧帅普)1, Yinglin Wang(王莹琳)1,2, Meiying Li(李美莹)1, Wei Su(苏蔚)1, Meiqi An(安美琦)1, Xintong Zhang(张昕彤)1,2, Yichun Liu(刘益春)1,2 |
1 Center for Advanced Optoelectronic Materials Research, School of Physics, and Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China; 2 National Demonstration Center for Experimental Physics Education, Northeast Normal University, Changchun 130024, China |
|
|
Abstract Depleted bulk heterojunction (DBH) PbS quantum dot solar cells (QDSCs), appearing with boosted short-circuit current density (Jsc), represent the great potential of solar radiation utilization, but suffer from the problem of increased interfacial charge recombination and reduced open-circuit voltage (Voc). Herein, we report that an insertion of ultrathin Al2O3 layer (ca. 1.2 Å thickness) at the interface of ZnO nanowires (NWs) and PbS quantum dots (QDs) could remarkably improve the performance of DBH-QDSCs fabricated from them, i.e., an increase of Voc from 449 mV to 572 mV, Jsc from 21.90 mA/cm2 to 23.98 mA/cm2, and power conversion efficiency (PCE) from 4.29% to 6.11%. Such an improvement of device performance is ascribed to the significant reduction of the interfacial charge recombination rate, as evidenced by the light intensity dependence on Jsc and Voc, the prolonged electron lifetime, the lowered trap density, and the enlarged recombination activation energy. The present research therefore provides an effective interfacial engineering means to improving the overall performance of DBH-QDSCs, which might also be effective to other types of optoelectronic devices with large interface area.
|
Received: 29 September 2017
Revised: 29 November 2017
Accepted manuscript online:
|
PACS:
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
78.67.Lt
|
(Quantum wires)
|
|
73.63.Kv
|
(Quantum dots)
|
|
62.23.Hj
|
(Nanowires)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91233204, 51372036, and 51602047), the Key Project of Chinese Ministry of Education (Grant No. 113020A), and the 111 Project, China (Grant No. B13013). |
Corresponding Authors:
Yinglin Wang, Xintong Zhang
E-mail: wangyl100@nenu.edu.cn;xtzhang@nenu.edu.cn
|
Cite this article:
Shuaipu Zang(臧帅普), Yinglin Wang(王莹琳), Meiying Li(李美莹), Wei Su(苏蔚), Meiqi An(安美琦), Xintong Zhang(张昕彤), Yichun Liu(刘益春) Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer 2018 Chin. Phys. B 27 018503
|
[1] |
Zarei H and Mekfar R 2015 Chin. Phys. B 25 027103
|
[2] |
Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Krogstrup P, Marcus C M, Nygard J and Majorana 2016 Science 354 1557
|
[3] |
Wei H, Wang G, Wu H, Luo Y, Li D and Meng Q 2016 Acta Phys. Chim. Sin. 32 201
|
[4] |
An X T 2014 Chin. Phys. B 23 107301
|
[5] |
Yan F L, Zhang J C, Yao D Y, Liu F Q, Wang L J, Liu J Q and Wang Z G 2015 Chin. Phys. B 24 024212
|
[6] |
Yuan M, Liu M and Sargent E H 2016 Nat. Energy 1 1
|
[7] |
Lan X, Voznyy O, Kiani A, Arquer F P G D, Abbas A S, Kim G, Liu M, Yang Z, Walters G, Xu J, Yuan M, Ning Z, Fan F, Kanjanaboos P, Kramer I, Zhitomirsky D, Lee P, Perelgut A, Hoogland S and Sargent E H 2016 Adv. Mater. 28 299
|
[8] |
Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A and Sargent E H 2012 Nat. Nanotech. 7 577
|
[9] |
Wang H, Pedro V G, Kubo T, -Santiago F F, Bisquert J, Sanehira Y, Nakazaki J and Segawa H 2015 J. Phys. Chem. C 119 27265
|
[10] |
Wang Y, Su W, Zang S, Li M, Zhang X and Liu Y 2017 Appl. Phys. Lett. 110 163902
|
[11] |
Zhitomirsky D, Voznyy O, Hoogland S and Sargent E H 2013 ACS Nano 7 5282
|
[12] |
Barkhouse D A R, Debnath R, Kramer I J, Zhitomirsky D, -Abraham A G P, Levina L, Etgar L, Grätzel M and Sargent E H 2011 Adv. Mater. 23 3134
|
[13] |
Wang H, Kubo T, Nakazaki J, Kinoshita T and Segawa H 2013 J. Phys. Chem. Lett. 4 2455
|
[14] |
Kim G, Arquer F P G D, Yoon Y, Lan X, Liu M, Voznyy O, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y and Sargent E H 2015 Nano Lett. 15 7691
|
[15] |
Zhang X and Johansson E M 2017 J. Mater. Chem. A 5 303
|
[16] |
Chang J, Kuga Y, Mora-Sero I, Toyoda T, Ogomi Y, Hayase S, Bisquert J and Shen Q 2015 Nanoscale 7 5446
|
[17] |
Zang S, Wang Y, Su W, Zhu H, Li G, Zhang X and Liu Y 2016 Phys. Status Solidi 10 745
|
[18] |
Dong J, Zhao Y, Shi J, Wei H, Xiao J, Xu X, Luo J, Xu J, Li D, Luo Y, Meng Q 2014 Chem. Commun. 50 13381
|
[19] |
Bashiri H, Karami M A and Mohammadnejad S 2017 Chin. Phys. B 26 108801
|
[20] |
Hines M A and Scholes G D 2003 Adv. Mater. 15 1844
|
[21] |
Zang S, Wang Y, Li M, Su W, Zhu H, Zhang X and Liu Y 2017 Sol. Energy Mater. Sol. Cells 169 264
|
[22] |
Xu C, Shin P, Cao L and Gao D 2010 J. Phys. Chem. C 114 125
|
[23] |
Chuang C H M, Brown P R, Bulović V and Bawendi M G 2014 Nat. Mater. 13 796
|
[24] |
Kyaw A K, Wang D H, Wynands D, Zhang J, Nguyen T Q, Bazan G C and Heeger A J 2013 Nano Lett. 13 3796
|
[25] |
Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D and Hummelen J C 2004 Adv. Funct. Mater. 14 38
|
[26] |
van Duren J K J, X. N. Yang X N, Loos J, Bulle-Lieuwma C W T, Sieval A B, Hummelen J C and Janssen R A J 2004 2004 Adv. Funct. Mater. 14 425
|
[27] |
Chuang C M, Maurano A, Brandt R E, Hwang G W, Jean J, Buonassisi T, Bulovic V and Bawendi M G 2015 Nano Lett. 15 3286
|
[28] |
Rath A, Pelayo Garcia de Arquer F, Stavrinadis A, Lasanta T, Bernechea M, Diedenhofen S L and Konstantatos G 2014 Adv. Mater. 26 4741
|
[29] |
Zaban A, Greenshtein M and Bisquert J 2003 Chem. Phys. Chem. 4 859
|
[30] |
Hochella M F and Carim A H 1988 Surf. Sci. 197 L260
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|