Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018503    DOI: 10.1088/1674-1056/27/1/018503
Special Issue: SPECIAL TOPIC — New generation solar cells
SPECIAL TOPIC—New generation solar cells Prev   Next  

Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer

Shuaipu Zang(臧帅普)1, Yinglin Wang(王莹琳)1,2, Meiying Li(李美莹)1, Wei Su(苏蔚)1, Meiqi An(安美琦)1, Xintong Zhang(张昕彤)1,2, Yichun Liu(刘益春)1,2
1 Center for Advanced Optoelectronic Materials Research, School of Physics, and Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China;
2 National Demonstration Center for Experimental Physics Education, Northeast Normal University, Changchun 130024, China
Abstract  Depleted bulk heterojunction (DBH) PbS quantum dot solar cells (QDSCs), appearing with boosted short-circuit current density (Jsc), represent the great potential of solar radiation utilization, but suffer from the problem of increased interfacial charge recombination and reduced open-circuit voltage (Voc). Herein, we report that an insertion of ultrathin Al2O3 layer (ca. 1.2 Å thickness) at the interface of ZnO nanowires (NWs) and PbS quantum dots (QDs) could remarkably improve the performance of DBH-QDSCs fabricated from them, i.e., an increase of Voc from 449 mV to 572 mV, Jsc from 21.90 mA/cm2 to 23.98 mA/cm2, and power conversion efficiency (PCE) from 4.29% to 6.11%. Such an improvement of device performance is ascribed to the significant reduction of the interfacial charge recombination rate, as evidenced by the light intensity dependence on Jsc and Voc, the prolonged electron lifetime, the lowered trap density, and the enlarged recombination activation energy. The present research therefore provides an effective interfacial engineering means to improving the overall performance of DBH-QDSCs, which might also be effective to other types of optoelectronic devices with large interface area.
Keywords:  interface charge recombination      Al2O3 interlayer      passivation      PbS quantum dots  
Received:  29 September 2017      Revised:  29 November 2017      Accepted manuscript online: 
PACS:  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  78.67.Lt (Quantum wires)  
  73.63.Kv (Quantum dots)  
  62.23.Hj (Nanowires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91233204, 51372036, and 51602047), the Key Project of Chinese Ministry of Education (Grant No. 113020A), and the 111 Project, China (Grant No. B13013).
Corresponding Authors:  Yinglin Wang, Xintong Zhang     E-mail:  wangyl100@nenu.edu.cn;xtzhang@nenu.edu.cn

Cite this article: 

Shuaipu Zang(臧帅普), Yinglin Wang(王莹琳), Meiying Li(李美莹), Wei Su(苏蔚), Meiqi An(安美琦), Xintong Zhang(张昕彤), Yichun Liu(刘益春) Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer 2018 Chin. Phys. B 27 018503

[1] Zarei H and Mekfar R 2015 Chin. Phys. B 25 027103
[2] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Krogstrup P, Marcus C M, Nygard J and Majorana 2016 Science 354 1557
[3] Wei H, Wang G, Wu H, Luo Y, Li D and Meng Q 2016 Acta Phys. Chim. Sin. 32 201
[4] An X T 2014 Chin. Phys. B 23 107301
[5] Yan F L, Zhang J C, Yao D Y, Liu F Q, Wang L J, Liu J Q and Wang Z G 2015 Chin. Phys. B 24 024212
[6] Yuan M, Liu M and Sargent E H 2016 Nat. Energy 1 1
[7] Lan X, Voznyy O, Kiani A, Arquer F P G D, Abbas A S, Kim G, Liu M, Yang Z, Walters G, Xu J, Yuan M, Ning Z, Fan F, Kanjanaboos P, Kramer I, Zhitomirsky D, Lee P, Perelgut A, Hoogland S and Sargent E H 2016 Adv. Mater. 28 299
[8] Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A and Sargent E H 2012 Nat. Nanotech. 7 577
[9] Wang H, Pedro V G, Kubo T, -Santiago F F, Bisquert J, Sanehira Y, Nakazaki J and Segawa H 2015 J. Phys. Chem. C 119 27265
[10] Wang Y, Su W, Zang S, Li M, Zhang X and Liu Y 2017 Appl. Phys. Lett. 110 163902
[11] Zhitomirsky D, Voznyy O, Hoogland S and Sargent E H 2013 ACS Nano 7 5282
[12] Barkhouse D A R, Debnath R, Kramer I J, Zhitomirsky D, -Abraham A G P, Levina L, Etgar L, Grätzel M and Sargent E H 2011 Adv. Mater. 23 3134
[13] Wang H, Kubo T, Nakazaki J, Kinoshita T and Segawa H 2013 J. Phys. Chem. Lett. 4 2455
[14] Kim G, Arquer F P G D, Yoon Y, Lan X, Liu M, Voznyy O, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y and Sargent E H 2015 Nano Lett. 15 7691
[15] Zhang X and Johansson E M 2017 J. Mater. Chem. A 5 303
[16] Chang J, Kuga Y, Mora-Sero I, Toyoda T, Ogomi Y, Hayase S, Bisquert J and Shen Q 2015 Nanoscale 7 5446
[17] Zang S, Wang Y, Su W, Zhu H, Li G, Zhang X and Liu Y 2016 Phys. Status Solidi 10 745
[18] Dong J, Zhao Y, Shi J, Wei H, Xiao J, Xu X, Luo J, Xu J, Li D, Luo Y, Meng Q 2014 Chem. Commun. 50 13381
[19] Bashiri H, Karami M A and Mohammadnejad S 2017 Chin. Phys. B 26 108801
[20] Hines M A and Scholes G D 2003 Adv. Mater. 15 1844
[21] Zang S, Wang Y, Li M, Su W, Zhu H, Zhang X and Liu Y 2017 Sol. Energy Mater. Sol. Cells 169 264
[22] Xu C, Shin P, Cao L and Gao D 2010 J. Phys. Chem. C 114 125
[23] Chuang C H M, Brown P R, Bulović V and Bawendi M G 2014 Nat. Mater. 13 796
[24] Kyaw A K, Wang D H, Wynands D, Zhang J, Nguyen T Q, Bazan G C and Heeger A J 2013 Nano Lett. 13 3796
[25] Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D and Hummelen J C 2004 Adv. Funct. Mater. 14 38
[26] van Duren J K J, X. N. Yang X N, Loos J, Bulle-Lieuwma C W T, Sieval A B, Hummelen J C and Janssen R A J 2004 2004 Adv. Funct. Mater. 14 425
[27] Chuang C M, Maurano A, Brandt R E, Hwang G W, Jean J, Buonassisi T, Bulovic V and Bawendi M G 2015 Nano Lett. 15 3286
[28] Rath A, Pelayo Garcia de Arquer F, Stavrinadis A, Lasanta T, Bernechea M, Diedenhofen S L and Konstantatos G 2014 Adv. Mater. 26 4741
[29] Zaban A, Greenshtein M and Bisquert J 2003 Chem. Phys. Chem. 4 859
[30] Hochella M F and Carim A H 1988 Surf. Sci. 197 L260
[1] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[2] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[3] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[4] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[5] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[6] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[7] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[8] Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer
Xiangwei Qu(瞿祥炜), Jingrui Ma(马精瑞), Siqi Jia(贾思琪), Zhenghui Wu(吴政辉), Pai Liu(刘湃), Kai Wang(王恺), and Xiao-Wei Sun(孙小卫). Chin. Phys. B, 2021, 30(11): 118503.
[9] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[10] Surface passivation in n-type silicon and its application insilicon drift detector
Yiqing Wu(吴怡清), Ke Tao(陶科), Shuai Jiang(姜帅), Rui Jia(贾锐), Ye Huang(黄也). Chin. Phys. B, 2020, 29(3): 037702.
[11] A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface
Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟). Chin. Phys. B, 2020, 29(12): 128801.
[12] Improving the performance of crystalline Si solar cell by high-pressure hydrogenation
Xi-Yuan Dai(戴希远), Yu-Chen Zhang(张宇宸), Liang-Xin Wang(王亮兴), Fei Hu(胡斐), Zhi-Yuan Yu(于志远), Shuai Li(李帅), Shu-Jie Li(李树杰), Xin-Ju Yang(杨新菊), and Ming Lu(陆明). Chin. Phys. B, 2020, 29(11): 118801.
[13] The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells
Yun-Long Deng(邓云龙), Zhi-Yuan Xu(徐知源), Kai Cai(蔡凯), Fei Ma(马飞), Juan Hou(侯娟), Shang-Long Peng(彭尚龙). Chin. Phys. B, 2019, 28(9): 098802.
[14] The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells
Jianhui Bao(包建辉), Ke Tao(陶科), Yiren Lin(林苡任), Rui Jia(贾锐), Aimin Liu(刘爱民). Chin. Phys. B, 2019, 28(9): 098201.
[15] Effect of SiN: Hx passivation layer on the reverse gate leakage current in GaN HEMTs
Sheng Zhang(张昇), Ke Wei(魏珂), Yang Xiao(肖洋), Xiao-Hua Ma(马晓华), Yi-Chuan Zhang(张一川), Guo-Guo Liu(刘果果), Tian-Min Lei(雷天民), Ying-Kui Zheng(郑英奎), Sen Huang(黄森), Ning Wang(汪宁), Muhammad Asif, Xin-Yu Liu(刘新宇). Chin. Phys. B, 2018, 27(9): 097309.
No Suggested Reading articles found!