Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018701    DOI: 10.1088/1674-1056/27/1/018701
Special Issue: SPECIAL TOPIC — Soft matter and biological physics
SPECIAL TOPIC—Soft matter and biological physics Prev   Next  

A network of conformational transitions in an unfolding process of HP-35 revealed by high-temperature MD simulation and a Markov state model

Dandan Shao(邵丹丹), Kaifu Gao(高恺夫)
Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
Abstract  An understanding of protein folding/unfolding processes has important implications for all biological processes, including protein degradation, protein translocation, aging, and diseases. All-atom molecular dynamics (MD) simulations are uniquely suitable for it because of their atomic level resolution and accuracy. However, limited by computational capabilities, nowadays even for small and fast-folding proteins, all-atom MD simulations of protein folding still presents a great challenge. An alternative way is to study unfolding process using MD simulations at high temperature. High temperature provides more energy to overcome energetic barriers to unfolding, and information obtained from studying unfolding can shed light on the mechanism of folding. In the present study, a 1000-ns MD simulation at high temperature (500 K) was performed to investigate the unfolding process of a small protein, chicken villin headpiece (HP-35). To infer the folding mechanism, a Markov state model was also built from our simulation, which maps out six macrostates during the folding/unfolding process as well as critical transitions between them, revealing the folding mechanism unambiguously.
Keywords:  molecular dynamics simulation      Markov state model      folding/unfolding      HP-35  
Received:  09 July 2017      Revised:  01 October 2017      Accepted manuscript online: 
PACS:  87.14.E- (Proteins)  
  87.15.ap (Molecular dynamics simulation)  
  87.15.Cc (Folding: thermodynamics, statistical mechanics, models, and pathways)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175068 and 11474117) and the Self-determined Research Funds of CCNU from the Colleges Basic Research and Operation of MOE, China (Grant No. 230-20205170054).
Corresponding Authors:  Kaifu Gao     E-mail:  gaokaifu@mail.ccnu.edu.cn

Cite this article: 

Dandan Shao(邵丹丹), Kaifu Gao(高恺夫) A network of conformational transitions in an unfolding process of HP-35 revealed by high-temperature MD simulation and a Markov state model 2018 Chin. Phys. B 27 018701

[1] Daggett V 2006 Chem. Rev. 106 1898
[2] Toofanny R D and Daggett V 2012 Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 405
[3] Karplus M and Weaver D L 1976 Nature 260 404
[4] Kim P S and Baldwin R L 1982 Annu. Rev. Biochem. 51 459
[5] Weissman J S and Kim P S 1991 Science 253 1386
[6] Radford S E, Dobson C M and Evans P A 1992 Nature 358 302
[7] Jackson S E and Fersht A R 1991 Biochemistry 30 10436
[8] Bowman G R, Voelz V A and Pande V S 2011 Curr. Opin. Struct. Biol. 21 4
[9] Piana S, Lindorff-Larsen K and Shaw D E 2012 Proc. Natl. Acad. Sci. USA 109 17845
[10] Piana S, Klepeis J L and Shaw D E 2014 Curr. Opin. Struct. Biol. 24 98
[11] Banushkina P V and Krivov S V 2013 J. Chem. Theory Comput. 9 5257
[12] Jain A and Stock G 2014 J. Phys. Chem. B 118 7750
[13] Mori T and Saito S 2016 J. Phys. Chem. B 120 11683
[14] Ma B G 2016 Chin. Sci. Bull. 61 2670
[15] He E B, Guo Z Y and Mao Y L 2009 Acta Biophys. Sin. 25 396
[16] Noé F and Fischer S 2008 Curr. Opin. Struct. Biol. 18 154
[17] Chodera J D, Singhal N, Pande V S, Dill K A and Swope W C 2007 J. Chem. Phys. 126 155101
[18] Buchete N V and Hummer G 2008 J. Phys. Chem. B 112 6057
[19] Bowman G R, Huang X and Pande V S 2009 Methods 49 197
[20] Bowman G R, Beauchamp K A, Boxer G and Pande V S 2009 J. Chem. Phys. 131 124101
[21] Muff S and Caflisch A 2009 J. Chem. Phys. 130 125104
[22] Prinz J H, Wu H, Sarich M, Keller B, Senne M, Held M, Chodera J D, Schtte C and Noé F 2011 J. Chem. Phys. 134 174105
[23] Noé F, Horenko I, Schütte C and Smith J C 2007 J. Chem. Phys. 126 155102
[24] Pande V S, Beauchamp K and Bowman G R 2010 Methods 52 99
[25] Beauchamp K A, McGibbon R, Lin Y S and Pande V S 2012 Proc. Natl. Acad. Sci. USA 109 17807
[26] Lane T J, Shukla D, Beauchamp K A and Pande V S 2013 Curr. Opin. Struct. Biol. 23 58
[27] Shukla D, Hernández C X, Weber J K and Pande V S 2015 Acc. Chem. Res. 48 414
[28] McKnight C J, Matsudaira P T and Kim P S 1997 Nat. Struct. Biol. 4 180
[29] Duan Y and Kollman P A 1998 Science 282 740
[30] Ghosh R, Roy S and Bagchi B 2013 J. Phys. Chem. B 117 15625
[31] Doering D S and Matsudaira P 1996 Biochemistry 35 12677
[32] Kubelka J, Eaton W A and Hofrichter J 2003 J. Mol. Biol. 329 625
[33] Duan Y, Wang L and Kollman P A 1998 Proc. Natl. Acad. Sci. USA 95 9897
[34] Jang S, Kim E, Shin S and Pak Y 2003 J. Am. Chem. Soc. 125 14841
[35] Lei H, Wu C, Liu H and Duan Y 2007 Proc. Natl. Acad. Sci. USA 104 4925
[36] Koulgi S, Sonavane U and Joshi R 2010 J. Mol. Graph. Model. 29 481
[37] Lei H and Duan Y 2007 J. Mol. Biol. 370 196
[38] Lu Y, Zhou X and Ou-Yang Z 2017 Chin. Phys. B 26 50202
[39] Case D A, Berryman J T, Betz R M, et al. 2015 Amber
[40] Götz A W, Williamson M J, Xu D, Poole D, Le Grand S and Walker R C 2012 J. Chem. Theory Comput. 8 1542
[41] Salomon-Ferrer R, Götz A W, Poole D, Le Grand S and Walker R C 2013 J. Chem. Theory Comput. 9 3878
[42] Maier J A, Martinez C, Kasavajhala K, Wickstrom L, Hauser K E and Simmerling C 2015 J. Chem. Theory Comput. 11 3696
[43] Pomelli C S, Tomasi J and Barone V 2001 Theor. Chem. Acc. 105 446
[44] Loncharich R J, Brooks B R and Pastor R W 1992 Biopolymers 32 523
[45] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[46] Ryckaert J P, Ciccotti G and Berendsen H J C 1977 J. Comput. Phys. 23 327
[47] Kabsch W and Sander C 1983 Biopolymers 22 2577
[48] Beauchamp K A, Bowman G R, Lane T J, Maibaum L, Haque I S and Pande V S 2011 J. Chem. Theory Comput. 7 3412
[49] Schwantes C R and Pande V S 2015 J. Chem. Theory Comput. 11 600
[50] Sadiq S K, Noé F and De Fabritiis G 2012 Proc. Natl. Acad. Sci. USA 109 20449
[51] Noé F, Schütte C, Vanden-Eijnden E, Reich L and Weikl T R 2009 Proc. Natl. Acad. Sci. USA 106 19011
[52] Cronkite-Ratcliff B and Pande V 2013 Bioinformatics 29 950
[53] Mesentean S, Koppole S, Smith J C and Fischer S 2007 J. Mol. Biol. 367 591
[54] Skjaerven L, Martinez A and Reuter N 2011 Proteins 79 232
[55] García A 1992 Phys. Rev. Lett. 68 2696
[56] Mesentean S, Fischer S and Smith J C 2006 Proteins 64 210
[57] Lou H and Cukier R I 2006 J. Phys. Chem. B 110 24121
[58] Tournier A L and Smith J C 2003 Phys. Rev. Lett. 91 208106
[59] Dill K A 1985 Biochemistry 24 1501
[60] Dill K A 1990 Biochemistry 29 7133
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!