Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 016201    DOI: 10.1088/1674-1056/27/1/016201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles calculations on elastic, magnetoelastic, and phonon properties of Ni2FeGa magnetic shape memory alloys

Wangqiang He(贺王强), Houbing Huang(黄厚兵), Zhuhong Liu(柳祝红), Xingqiao Ma(马星桥)
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

The elastic, magnetoelastic, and phonon properties of Ni2 FeGa were investigated through first-principles calculations. The obtained elastic and phonon dispersion curves for the austenite and martensite phases agree well with available theoretical and experimental results. The isotropic elastic moduli are also predicted along with the polycrystalline aggregate properties including the bulk modulus, shear modulus, Young's modulus, and Poisson's ratio. The Pugh ratio indicates that Ni2 FeGa shows ductility, especially the austenite phase, which is consistent with the experimental results. The Debye temperatures of the Ni2 FeGa in the austenite and martensite phases are 344 K and 392 K, respectively. It is predicted that the magnetoelastic coefficient is -5.3×106 J/m3 and magnetostriction coefficient is between 135 and 55 ppm in the Ni2 FeGa austenite phase.

Keywords:  Ni2FeGa      elastic constants      first-principles calculations      magnetoelastic coefficients  
Received:  09 July 2017      Revised:  26 August 2017      Accepted manuscript online: 
PACS:  62.20.de (Elastic moduli)  
  62.20.dj (Poisson's ratio)  
  63.10.+a (General theory)  
  75.47.Np (Metals and alloys)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174030 and 11504020) and the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-TP-16-064A1, 06500031).

Corresponding Authors:  Wangqiang He, Houbing Huang     E-mail:  hewangqiang@yeah.net;hbhuang@ustb.edu.cn

Cite this article: 

Wangqiang He(贺王强), Houbing Huang(黄厚兵), Zhuhong Liu(柳祝红), Xingqiao Ma(马星桥) First-principles calculations on elastic, magnetoelastic, and phonon properties of Ni2FeGa magnetic shape memory alloys 2018 Chin. Phys. B 27 016201

[1] Ullakko K, Huang J K, Kantner C, O'Handley R C and Kokorin V V 1996 Appl. Phys. Lett. 69 1966
[2] Sozinov A, Likhachev A A, Lanska N and Ullakko K 2002 Appl. Phys. Lett. 80 1746
[3] Sozinov A, Lanska N, Soroka A and Zou W 2013 Appl. Phys. Lett. 102 021902
[4] Masdeu F, Pons J, Cesari E, Kustov S and Chumlyakov Y I 2008 Appl. Phys. Lett. 93 152503
[5] Sutou Y, Kamiya N, Omori T, Kainuma R, Ishida K and Oikawa K 2004 Appl. Phys. Lett. 84 1275
[6] Oikawa K, Ota T, Ohmori T, Tanaka Y, Morito H, Fujita A, Kainuma R, Fukamichi K and Ishida K 2002 Appl. Phys. Lett. 81 5201
[7] Morito H, Fujita A, Fukamichi K, Kainuma R, Ishida K and Oikawa K 2003 Appl. Phys. Lett. 83 4993
[8] Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X and Xiao G 2003 Appl. Phys. Lett. 82 424
[9] Liu L, Fu S, Liu Z, Wu G, Sun X and Li J 2006 J. Alloy Compd. 425 176
[10] Liu Q H, Liu J, Huang Y J, Hu Q D and Li J G 2013 J. Alloy Compd. 572 186
[11] Xu Y, Lu B, Sun W, Yan A and Liu J 2015 Appl. Phys. Lett. 106 201903
[12] Xiao F, Jin M, Liu J and Jin X 2015 Acta Mater. 96 292
[13] Wu J H and Liu C X 2016 Chin. Phys. Lett. 33 036202
[14] Liu X K 2013 Chin. Phys. Lett. 30 066201
[15] Huang C B, Wu H X, Ni Y B, Wang Z Y, Qi M and Zhang C L 2016 Chin. Phys. B 25 086201
[16] Shakil M Z, Shabbir Ahmed, Muhammad Raza-ur-rehman Hashmi, Choudhary M A and Iqbal T 2016 Chin. Phys. B 25 076104
[17] Soykan C, Özdemir Kart S, Sevik C and çaǧin T 2014 J. Alloy Compd. 611 225
[18] Sahariah M B, Ghosh S, Singh C S, Gowtham S and Pandey R 2013 J. Phys. Conden. Matt. 25 025502
[19] Liu Z H, Hu H N, Liu G D, Cui Y T, Zhang M, Chen J L, Wu G H and Xiao G 2004 Phys. Rev. B 69 134415
[20] Chabungbam S, Borgohain P, Ghosh S, Singh N and Sahariah M B 2016 J. Alloy Compd. 689 199
[21] Bai J, Wang X S, Zu Q R, Zhao X and Zuo L 2016 Acta Phys. Sin. 65 096103 (in Chinese)
[22] Chabungbam S and Sahariah M B 2015 J. Alloy Compd. 647 70
[23] Chabungbam S, Gowtham S and Sahariah M B 2014 Phys. Rev. B 89 085114
[24] Ozdemir Kart S and Cagin T 2010 J. Alloy Compd. 508 177
[25] Li L J, Lei C H, Shu Y C and Li J Y 2011 Acta Mater. 59 2648
[26] Wu P P, Ma X Q, Zhang J X and Chen L Q 2008 J. Appl. Phys. 104 073906
[27] Wang J J, Ma X Q, Huang H B, He W Q, Liu Z H and Chen L Q 2013 J. Appl. Phys. 114 013504
[28] Gu Y, Rabe K, Bousquet E, Gopalan V and Chen L Q 2012 Phys. Rev. B 85 064117
[29] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] John P, Perdew K B and Matthias Ernzerhof 1996 Phys. Rev. Lett. 77 3865
[33] Methfessel M and Paxton A 1989 Phys. Rev. B 40 3616
[34] Hobbs D, Kresse G and Hafner J 2000 Phys. Rev. B 62 11556
[35] Marsman M and Hafner J 2002 Phys. Rev. B 66 224409
[36] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[37] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[38] Pérez-Landazábal J I, Recarte V, Sánchez-Alarcos V, Rodríguez-Velamazán J A, Jiménez-Ruiz M, Link P, Cesari E and Chumlyakov Y I 2009 Phys. Rev. B 80 144301
[39] Shang S, Wang Y and Liu Z K 2007 Appl. Phys. Lett. 90 101909
[40] Li C M, Luo H B, Hu Q M, Yang R, Johansson B and Vitos L 2012 Phys. Rev. B 86 214205
[41] Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Taubner Press)
[42] Reuss A and Angew Z 1929 Math. Mech. 9 49
[43] Hill R 1952 Proc. Phys. Soc. A 65 349
[44] Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823
[45] Schroers J and Johnson W L 2004 Phys. Rev. Lett. 93 255506
[46] Moruzzi V L, Janak J F and Schwarz K 1988 Phys. Rev. B 37 790
[47] Herper E H and Entel P 1999 Phys. Rev. B 60 3839
[48] James P, Eriksson O, Hjortstam O, Johansson B R and Nordström L 2000 Appl. Phys. Lett. 76 915
[49] Enkovaara J, Ayuela A, Nordström L and Nieminen R 2002 Phys. Rev. B 65 134422
[50] Wang H, Zhang Y N, Yang T, Zhang Z D, Sun L Z and Wu R Q 2010 Appl. Phys. Lett. 97 262505
[51] Zayak A, Entel P, Enkovaara J, Ayuela A and Nieminen R 2003 Phys. Rev. B 68 132402
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!