CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
First-principles calculations on elastic, magnetoelastic, and phonon properties of Ni2FeGa magnetic shape memory alloys |
Wangqiang He(贺王强), Houbing Huang(黄厚兵), Zhuhong Liu(柳祝红), Xingqiao Ma(马星桥) |
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract The elastic, magnetoelastic, and phonon properties of Ni2 FeGa were investigated through first-principles calculations. The obtained elastic and phonon dispersion curves for the austenite and martensite phases agree well with available theoretical and experimental results. The isotropic elastic moduli are also predicted along with the polycrystalline aggregate properties including the bulk modulus, shear modulus, Young's modulus, and Poisson's ratio. The Pugh ratio indicates that Ni2 FeGa shows ductility, especially the austenite phase, which is consistent with the experimental results. The Debye temperatures of the Ni2 FeGa in the austenite and martensite phases are 344 K and 392 K, respectively. It is predicted that the magnetoelastic coefficient is -5.3×106 J/m3 and magnetostriction coefficient is between 135 and 55 ppm in the Ni2 FeGa austenite phase.
|
Received: 09 July 2017
Revised: 26 August 2017
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174030 and 11504020) and the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-TP-16-064A1, 06500031). |
Corresponding Authors:
Wangqiang He, Houbing Huang
E-mail: hewangqiang@yeah.net;hbhuang@ustb.edu.cn
|
Cite this article:
Wangqiang He(贺王强), Houbing Huang(黄厚兵), Zhuhong Liu(柳祝红), Xingqiao Ma(马星桥) First-principles calculations on elastic, magnetoelastic, and phonon properties of Ni2FeGa magnetic shape memory alloys 2018 Chin. Phys. B 27 016201
|
[1] |
Ullakko K, Huang J K, Kantner C, O'Handley R C and Kokorin V V 1996 Appl. Phys. Lett. 69 1966
|
[2] |
Sozinov A, Likhachev A A, Lanska N and Ullakko K 2002 Appl. Phys. Lett. 80 1746
|
[3] |
Sozinov A, Lanska N, Soroka A and Zou W 2013 Appl. Phys. Lett. 102 021902
|
[4] |
Masdeu F, Pons J, Cesari E, Kustov S and Chumlyakov Y I 2008 Appl. Phys. Lett. 93 152503
|
[5] |
Sutou Y, Kamiya N, Omori T, Kainuma R, Ishida K and Oikawa K 2004 Appl. Phys. Lett. 84 1275
|
[6] |
Oikawa K, Ota T, Ohmori T, Tanaka Y, Morito H, Fujita A, Kainuma R, Fukamichi K and Ishida K 2002 Appl. Phys. Lett. 81 5201
|
[7] |
Morito H, Fujita A, Fukamichi K, Kainuma R, Ishida K and Oikawa K 2003 Appl. Phys. Lett. 83 4993
|
[8] |
Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X and Xiao G 2003 Appl. Phys. Lett. 82 424
|
[9] |
Liu L, Fu S, Liu Z, Wu G, Sun X and Li J 2006 J. Alloy Compd. 425 176
|
[10] |
Liu Q H, Liu J, Huang Y J, Hu Q D and Li J G 2013 J. Alloy Compd. 572 186
|
[11] |
Xu Y, Lu B, Sun W, Yan A and Liu J 2015 Appl. Phys. Lett. 106 201903
|
[12] |
Xiao F, Jin M, Liu J and Jin X 2015 Acta Mater. 96 292
|
[13] |
Wu J H and Liu C X 2016 Chin. Phys. Lett. 33 036202
|
[14] |
Liu X K 2013 Chin. Phys. Lett. 30 066201
|
[15] |
Huang C B, Wu H X, Ni Y B, Wang Z Y, Qi M and Zhang C L 2016 Chin. Phys. B 25 086201
|
[16] |
Shakil M Z, Shabbir Ahmed, Muhammad Raza-ur-rehman Hashmi, Choudhary M A and Iqbal T 2016 Chin. Phys. B 25 076104
|
[17] |
Soykan C, Özdemir Kart S, Sevik C and çaǧin T 2014 J. Alloy Compd. 611 225
|
[18] |
Sahariah M B, Ghosh S, Singh C S, Gowtham S and Pandey R 2013 J. Phys. Conden. Matt. 25 025502
|
[19] |
Liu Z H, Hu H N, Liu G D, Cui Y T, Zhang M, Chen J L, Wu G H and Xiao G 2004 Phys. Rev. B 69 134415
|
[20] |
Chabungbam S, Borgohain P, Ghosh S, Singh N and Sahariah M B 2016 J. Alloy Compd. 689 199
|
[21] |
Bai J, Wang X S, Zu Q R, Zhao X and Zuo L 2016 Acta Phys. Sin. 65 096103 (in Chinese)
|
[22] |
Chabungbam S and Sahariah M B 2015 J. Alloy Compd. 647 70
|
[23] |
Chabungbam S, Gowtham S and Sahariah M B 2014 Phys. Rev. B 89 085114
|
[24] |
Ozdemir Kart S and Cagin T 2010 J. Alloy Compd. 508 177
|
[25] |
Li L J, Lei C H, Shu Y C and Li J Y 2011 Acta Mater. 59 2648
|
[26] |
Wu P P, Ma X Q, Zhang J X and Chen L Q 2008 J. Appl. Phys. 104 073906
|
[27] |
Wang J J, Ma X Q, Huang H B, He W Q, Liu Z H and Chen L Q 2013 J. Appl. Phys. 114 013504
|
[28] |
Gu Y, Rabe K, Bousquet E, Gopalan V and Chen L Q 2012 Phys. Rev. B 85 064117
|
[29] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[30] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[31] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[32] |
John P, Perdew K B and Matthias Ernzerhof 1996 Phys. Rev. Lett. 77 3865
|
[33] |
Methfessel M and Paxton A 1989 Phys. Rev. B 40 3616
|
[34] |
Hobbs D, Kresse G and Hafner J 2000 Phys. Rev. B 62 11556
|
[35] |
Marsman M and Hafner J 2002 Phys. Rev. B 66 224409
|
[36] |
Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
|
[37] |
Togo A and Tanaka I 2015 Scr. Mater. 108 1
|
[38] |
Pérez-Landazábal J I, Recarte V, Sánchez-Alarcos V, Rodríguez-Velamazán J A, Jiménez-Ruiz M, Link P, Cesari E and Chumlyakov Y I 2009 Phys. Rev. B 80 144301
|
[39] |
Shang S, Wang Y and Liu Z K 2007 Appl. Phys. Lett. 90 101909
|
[40] |
Li C M, Luo H B, Hu Q M, Yang R, Johansson B and Vitos L 2012 Phys. Rev. B 86 214205
|
[41] |
Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Taubner Press)
|
[42] |
Reuss A and Angew Z 1929 Math. Mech. 9 49
|
[43] |
Hill R 1952 Proc. Phys. Soc. A 65 349
|
[44] |
Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823
|
[45] |
Schroers J and Johnson W L 2004 Phys. Rev. Lett. 93 255506
|
[46] |
Moruzzi V L, Janak J F and Schwarz K 1988 Phys. Rev. B 37 790
|
[47] |
Herper E H and Entel P 1999 Phys. Rev. B 60 3839
|
[48] |
James P, Eriksson O, Hjortstam O, Johansson B R and Nordström L 2000 Appl. Phys. Lett. 76 915
|
[49] |
Enkovaara J, Ayuela A, Nordström L and Nieminen R 2002 Phys. Rev. B 65 134422
|
[50] |
Wang H, Zhang Y N, Yang T, Zhang Z D, Sun L Z and Wu R Q 2010 Appl. Phys. Lett. 97 262505
|
[51] |
Zayak A, Entel P, Enkovaara J, Ayuela A and Nieminen R 2003 Phys. Rev. B 68 132402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|