Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 116501    DOI: 10.1088/1674-1056/26/11/116501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles calculations of structural and thermodynamic properties of β-PbO

Vahedeh Razzazi, Sholeh Alaei
Department of Physics, Urmia Branch, Islamic Azad University, Urmia 969, Iran
Abstract  We employed ab-initio calculations to investigate the structural and thermodynamic properties of Massicot or orthorhombic phase of PbO named β-PbO using the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA). The temperature and pressure dependence of bulk modulus, heat capacity at constant pressure and constant volume, entropy, thermal expansion coefficient and Grüneisen parameter were discussed. Accuracy of two different models, the Debye and Debye-Grüneisen which are based on the quasi-harmonic approximation (QHA) for producing thermodynamic properties of material were compared. According to calculation results, these two models can be used to designate thermodynamic properties for β-PbO with sensible accuracy over a wide range of temperatures and pressures, and our work on the properties of this structure will be useful for more deeply understanding various properties of this structure.
Keywords:  β-PbO      first-principles calculations      quasi-harmonic approximation      thermodynamic properties  
Received:  19 June 2017      Revised:  29 July 2017      Accepted manuscript online: 
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  63.20.dk (First-principles theory)  
  05.70.-a (Thermodynamics)  
  65.40.Ba (Heat capacity)  
Fund: Project supported by the Research Project of Islamic Azad University, Urmia Branch.
Corresponding Authors:  Vahedeh Razzazi     E-mail:  v.razzazi@iaurmia.ac.ir

Cite this article: 

Vahedeh Razzazi, Sholeh Alaei First-principles calculations of structural and thermodynamic properties of β-PbO 2017 Chin. Phys. B 26 116501

[1] Pan Z W, Dai Z R and Wang Z L 2002 Appl. Phys. Lett. 80 309
[2] Sun P, Matsuura N and Ruda H F 2004 J. Appl. Phys. 96 3417
[3] White W B, Dachille F and Roy R 1961 J. Am. Ceram. Soc. 44 170
[4] Leciejewicz J 1961 Acta Crystallogr. 14 1304
[5] Hehner N E and Ritchie E J 1974 Lead Oxides:Chemistry, Technology, Battery Manufacturing Uses, History(Largo, Fla.:Independent Batttery Manufacturers Association)
[6] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212
[7] Kwestroo W, de Jonge J and Vromans P H G M 1967 J. Inorganic Nuclear Chem. 29 39
[8] Wriedt H A 1988 J. Phase Equilibria 9 106
[9] Shi S, Zhang H, Ke X, Ouyang C, Lei M and Chen L 2009 Phys. Lett. A 373 4096
[10] Shi S, Ke X, Ouyang C, Zhanga H, Dinga H, Tanga Y, Zhoua W, Li P, Lei M and Tanga W 2009 J. Power Sources 194 830
[11] Cang Y P, Lian S B, Yang H M and Chen D 2016 Chin. Phys. Lett. 33 066301
[12] Ren Y M and Li X 2016 Acta Phys. Sin. 65 156301 (in Chinese)
[13] Liu X K and Tang B 2013 Chin. Phys. Lett. 30 066201
[14] Wang X F, Ma J J, Jiao Z Y and Zhang X Z 2016 Acta Phys. Sin. 65 206201 (in Chinese)
[15] Boher P, Garnier P, Gavarri J R and Hewat A W 1985 J. Sol. State Chem. 57 343
[16] Adams D M, Christy A G, Haines J and Clark S M 1992 Phys. Rev. B 46 11358
[17] Mizoguchi H, Kawazoe H and Hosono H 1996 Chem. Mater. 8 2769
[18] White W B and Roy R 1964 J. Amer. Ceram. Soc. 47 242
[19] Canepa P, Ugliengo P and Alfredsson M 2012 arXiv:1204.2842v3[cond-mat.mtrl-sci]
[20] Moruzzi V L, Janak J F and Schwarz K 1988 Phys. Rev. B 37 790
[21] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.:Condens. Matter 21 395502
[22] Vanderbilt D 1990 Phys. Rev. B 41 7892
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Monkhorst J and Pack J D 1976 Phys. Rev. B 13 5188
[25] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[26] Birch F 1947 Phys. Rev. 71 809
[27] Birch F 1978 J. Geophys. Res. 83 1257
[28] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[29] Blanco M A, Francisco E and Luaña V 2004 Comput. Phys. Commun. 158 57
[30] Rooymans C J M 1968 Structural Investigations on Some Oxides and Other Chalcogenides at Normal and Very High Pressures (Netherlands:Philips Res. Repts Suppl.)
[31] Francisco E, Recio J M, Blanco M A and Martín P A 1998 J. Phys. Chem. 102 1595
[32] Francisco E, Sanjurjo G and Blanco M A 2001 Phys. Rev. B 63 094107
[33] Flórez M, Recio J M, Francisco E, Blanco M A and Martín P A 2002 Phys. Rev. B 66 144112
[34] Otero-de-la-Roza A, Abbasi-Pérez D and Luaña V 2011 Comput. Phys. Commun. 182 2232
[35] Takayanagi S, Araki S, Setta R, Onuki Y and Mori N 2001 J. Phys. Soc. Jpn. 70 753
[36] Spencer H M and SpicerW M 1942 J. Am. Chem. Soc. 64 617
[37] Risold D, Nagata J I and Suzuki R O 1998 J. Phase Equilibria 19 213
[38] Chase M W, Davies C A, Downey J R, Frurip D J, Mcdonald R A and Syverud A N 1985 JANAF Thermochemical Tables(3rd edn.) J. Phys. Chem, Ref. Data 14 Suppl. 1
[39] Kostryukov V N and Morozova G K 1960 Russ. J. Phys. Chem. 384 873
[40] Sorrell C A 1970 J. Amer. Ceramic Soc.-Sorrel 53 10
[41] White W B, Dachille F and Roy R 1961 J. Am. Ceram. Soc. 44 170
[42] Ruer R 1906 Z. Anorg. Allg. Chem. 50 265
[43] Jaeger F M and Germs H C 1921 Z. Anorg. Allg. Chem. 119 145
[44] Pedley J B, Naylor R D and Kirby S P 1986 Thermochemical Data of Organic Compounds (2nd edn.)(London:Chapman& Hall)
[45] Dzhafarov T D, Altunbas M and Gorur O 1996 J. Mater. Sci. 31 2207
[46] Kirchner H P 1964 Solid State Chem. 1 1
[47] Giefersa H and Porschb F 2007 Physica B 400 53
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[12] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[13] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[14] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[15] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
No Suggested Reading articles found!