Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 108101    DOI: 10.1088/1674-1056/26/10/108101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Germanene nanomeshes:Cooperative effects of degenerate perturbation and uniaxial strain on tuning bandgap

Yan Su(苏燕), Xinyu Fan(范新宇)
Department of Physics, University of Ji'nan, Ji'nan 250022, China
Abstract  

Based on the detailed first-principles calculations, we have carefully investigated the defect induced band splitting and its combination with Dirac cone move in bandgap opening. The uniaxial strain can split the π -like bands into πa and πz bands with energy interval Estrain to shift the Dirac cone. Also, the inversion symmetry preserved antidot can split πa (πz) into πa1 and πa2 (πz1 and πz2) bands with energy interval Edefect to open bandgap in the nanomesh with Γ as four-fold degenerate Dirac point according to the band-folding analysis. Though the Edefect would keep almost unaffected, the Estrain would be increased by enhancing the uniaxial strain to continuously tune the gap width. Then the bandgap can be reversibly switched on/off. Our studies of the inversion symmetry preserved nanomesh show distinct difference in bandgap opening mechanism as compared to the one by breaking the sublattice equivalence in the (GaAs)6 nanoflake patterned nanomesh. Here, the π-band gap remains almost unchanged against strain enhancing.

Keywords:  first-principles calculation      novel two-dimensional nanostructure      bandgap engineering  
Received:  27 May 2017      Revised:  30 June 2017      Accepted manuscript online: 
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  81.05.Rm (Porous materials; granular materials)  
  81.05.ue (Graphene)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374128 and 11674129) and partially supported by the Science and Technology Program of University of Jinan (Grant No. XKY1705).

Corresponding Authors:  Xinyu Fan     E-mail:  xyfan_ujn@163.com

Cite this article: 

Yan Su(苏燕), Xinyu Fan(范新宇) Germanene nanomeshes:Cooperative effects of degenerate perturbation and uniaxial strain on tuning bandgap 2017 Chin. Phys. B 26 108101

[1] Novoselov K S, Geim A K, Mozorov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Zhang Y, Tan Y-W, Stormer H L and Kim P 2005 Nature 438 201
[4] Wang J, Duan X M and Zhang P 2016 Chin. Phys. B 25 057301
[5] Yang, Y, Cao J X and Yang W 2008 Chin. Phys. B 17 1881
[6] Guo Y H, Cao J X and Xu B 2016 Chin. Phys. B 25 017101
[7] Wu X G 2016 Chin. Phys. B 25 117801
[8] Wei Y, Jia T and Chen G 2017 Chin. Phys. B 26 028103
[9] Lin C L, Arafune R, Kawai M and Takagi N 2015 Chin. Phys. B 24 87307
[10] Li H, Fu H X and Meng S 2015 Chin. Phys. B 24 086102
[11] Wang H B, Su Y and Chen G 2014 Chin. Phys. B 23 018103
[12] Tang Q and Zhou Z 2013 Prog. Mater. Sci. 58 1244
[13] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[14] Zhao T, Zhang S, Wang Q, Kawazoe Y and Jena P 2014 Phys. Chem. Chem. Phys. 16 22979
[15] Padiha J E and Pontes R B 2016 Solid State Commun. 225 38
[16] Guzmán-Verri G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[17] Nijamudheen A, Bhattacharjee R, Choudhury S and Datta A 2015 J. Phys. Chem. C 119 3802
[18] Oughaddou H, Sawaya S, Goniakowski J, Aufray B, Le Lay G, Gay J M, Tréglia G, Bibérian J P, Barrett N, Guillot C, Mayne A and Dujardin G 2000 Phys. Rev. B 62 16653
[19] Li L, Lu S, Pan J, Qin Z, Wang Y, Wang Y, Cao G, Du S and Gao H 2014 Adv. Mater. 26 4820
[20] Dávila M E, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002
[21] Derivaz M, Dentel D, Stephan R, Hanf M-C, Mehdaoui A, Sonnet P and Pirri C 2015 Nano Lett. 15 2510
[22] Yuan J, Tang C, Zhong J and Mao Y 2015 Appl. Surf. Sci. 360 707
[23] Matthes L, Pulci O and Bechstedt F 2014 New J. Phys. 16 105007
[24] Deng Z, Li Z and Wang W 2015 Chem. Phys. Lett. 637 26
[25] Kaloni T P, Modarresi M, Tahir M, Roknabadi M R, Schreckenbach G and Freund M 2015 J. Phys. Chem. C 119 11896
[26] Li Y and Chen Z 2014 J. Phys. Chem. C 118 1148
[27] Xiao P, Fan X L and Liu L M 2014 Comp. Mater. Sci. 92 244
[28] Wang X Q, Li H D and Wang J T 2012 Phys. Chem. Chem. Phys. 14 3031
[29] Pang Q, Zhang C L, Li L, Fu Z Q, Wei X M and Song Y L 2014 Appl. Surf. Sci. 314 15
[30] Pang Q, Li L, Zhang C L, Wei X M and Song Y L 2015 Mater. Chem. Phys. 160 96
[31] Kaloni T P 2014 J. Phys. Chem. C 118 25200
[32] Li S J, Su Y and Chen G 2015 Chem. Phys. Lett. 638 187
[33] Meng Y, Quhe R, Zheng J, Ni Z, Wang Y, Yuan Y, Tse G, Shi J, Gao Z and Lu J 2014 Physica E:Low-dimens. Syst. Nanostruct. 59 60
[34] Broek B, Houssa M, Scalise E, Pourtois G, Afanas'ev V V and Stesmans A 2014 Appl. Surf. Sci. 291 104
[35] Gong L, Xiu S L, Zheng M M, Zhao P, Zhang Z, Liang Y Y, Chen G and Kawazoe Y 2014 J. Mater. Chem. C 2 8773
[36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[40] Yang J, Ma M, Li L, Zhang Y, Huang W and Dong X 2014 Nanoscale 6 13301
[41] Xiu S L, Zheng M M, Zhao P, Zhang Y, Liu H Y, Li S J, Chen G and Kawazoe Y 2014 Carbon 79 646
[42] Singleton J 2001 Band Theory and Electronic Properties of Solids (New York:Oxford University Press)
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!