Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 108201    DOI: 10.1088/1674-1056/26/10/108201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Angle-resolved x-ray photoelectron spectroscopy study of GeOx growth by plasma post-oxidation

Zhiqian Zhao(赵治乾)1, Jing Zhang(张静)1, Xiaolei Wang(王晓磊)2,3, Shuhua Wei(魏淑华)1, Chao Zhao(赵超)2,3, Wenwu Wang(王文武)2,3
1. Microelectronics Department, North China University of Technology, Beijing 100041, China;
2. Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
3. School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The growth process of GeOx films formed by plasma post-oxidation (PPO) at room temperature (RT) is investigated using angle-resolved x-ray photoelectron spectroscopy (AR-XPS). The experimental results show that the distributions of the Ge4+ states, a mixture of the Ge2+ and Ge3+ states, and the Ge1+ states are localized from the GeOx surface to the GeOx/Ge interface. Moreover, the Ge1+ states are predominant when the two outermost layers of Ge atoms are oxidized. These findings are helpful for establishing in-depth knowledge of the growth mechanism of the GeOx layer and valuable for the optimization of Ge-based gate stacks for future complementary metal-oxide-semiconductor (MOS) field-effect transistor (CMOSFET) devices.
Keywords:  Ge      plasma post-oxidation      MOS      XPS  
Received:  01 April 2017      Revised:  15 June 2017      Accepted manuscript online: 
PACS:  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
  81.65.Mq (Oxidation)  
  52.77.Dq (Plasma-based ion implantation and deposition)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574168 and 61504163).
Corresponding Authors:  Jing Zhang, Jing Zhang     E-mail:  zhangj@ncut.edu.cn;wangxiaolei@ime.ac.cn

Cite this article: 

Zhiqian Zhao(赵治乾), Jing Zhang(张静), Xiaolei Wang(王晓磊), Shuhua Wei(魏淑华), Chao Zhao(赵超), Wenwu Wang(王文武) Angle-resolved x-ray photoelectron spectroscopy study of GeOx growth by plasma post-oxidation 2017 Chin. Phys. B 26 108201

[1] Gupta S, Gong X, Zhang R, Yeo Y C, Takagi S and Saraswat K C 2014 MRS Bull. 39 678
[2] Takagi S 2011 IEEE Int. Electron Devices Meeting, Short course
[3] Xie Q, Deng S, Schaekers M, Lin D, Caymax M, Delabie A, Qu X P, Jiang Y L, Deduytsche D and Detavernier C 2012 Semicond. Sci. Technol. 27 074012
[4] Saraswat K C, Chui C O, Krishnamohan T, Nayfeh A and McIntyre P 2005 Microelectron. Eng. 80 15
[5] Otani Y, Itayama Y, Tanaka T, Fukuda Y, Toyota H, Ono T, Mitsui M and Nakagawa K 2007 Appl. Phys. Lett. 90 142114
[6] Maeda T, Nishizawa M, Morita Y and Takagi S 2007 Appl. Phys. Lett. 90 072911
[7] Bera M K, Mahata C, Chakraborty A K, Nandi S K, Tiwari J N, Hung J Y and Maiti C K 2007 Semicond. Sci. Technol. 22 1352
[8] Sugawara T, Oshima Y, Sreenivasan R and McIntyre P C 2007 Appl. Phys. Lett. 90 112912
[9] Ritenour A, Hennessy J and Antoniadis D A 2007 IEEE Electron Dev. Lett. 28 746
[10] Kim K H, Gordon R G, Ritenour A and Antoniadis D A 2007 Appl. Phys. Lett. 90 212104.
[11] Xie R, Phung T H, Yu M and Zhu C 2010 IEEE Trans. Electron Dev. 57 1399
[12] Wu N, Zhang Q, Zhu C, Chan D S H, Li M F, Balasubramanian N, Chin A and Kwong D L 2004 Appl. Phys. Lett. 85 4127
[13] Wu N, Zhang Q, Zhu C, Chan D S H, Du A, Balasubramanian N, Li M F, Sin J K O and Kwong D L 2004 IEEE Electron Dev. Lett. 25 631
[14] Caymax M, Leys F, Mitard J, Martens K, Yang L, Pourtois G, Vandervorst W, Meuris M and Loo R 2009 J. Electrochem. Soc. 156 H979
[15] Chen W B, Shie B S and Chin A 2011 IEEE Electron Dev. Lett. 32 449
[16] Frank M M, Koester S J, Copel M, Ott J A and Loesing R 2006 Appl. Phys. Lett. 89 112905
[17] Xie R and Zhu C 2007 IEEE Electron Dev. Lett. 28 976
[18] Sioncke S, Lin H C, Brammertz G, Delabie A, Conard T, Franquet A, Meuris M, Struyf H, Gendt S De, Heyns M, Fleischmann C, Temst K, Vantomme A, Müller M, Kolbe M, Beckhoff B and Caymax M 2011 J. Electrochem. Soc. 158 H687
[19] Merckling C, Chang Y C, Lu C Y, Penaud J, El-Kazzi M, Bellenger F, Brammertz G, Hong M, Kwo J, Meuris M, Dekoster J, Heyns M M and Caymax M 2011 Microelectron. Eng. 88 399
[20] Matsubara H, Sasada T, Takenaka M and Takagi S 2008 Appl. Phys. Lett. 93 032104
[21] Hosoi T, Kutsuki K, Okamoto G, Saito M, Shimura T and Watanabe H 2009 Appl. Phys. Lett. 94 202112
[22] Lee C H, Tabata T, Nishimura T, Nagashio K, Kita K and Toriumi A 2009 Appl. Phys. Express 2 071404
[23] Lee C H, Nishimura T, Nagashio K, Kita K and Toriumi A 2011 IEEE Trans. Electron Dev. 58 1295
[24] Delabie A, Bellenger F, Houssa M, Conard T, Elshocht S V, Caymax M, Heyns M and Meuris M 2007 Appl. Phys. Lett. 91 082904
[25] Matsubara H, Sasada T, Takenaka M and Takagi S 2008 Appl. Phys. Lett. 93 032104
[26] Xie R, He W, Yu M and Zhu C 2008 Appl. Phys. Lett. 93 073504
[27] Gu J J, Liu Y Q, Xu M, Celler G K, Gordon R G and Ye P D 2010 Appl. Phys. Lett. 97 012106
[28] Delabie A, Alian A, Bellenger F, Caymax M, Conard T, Franquet A, Sioncke S, Van Elshocht S, Heyns M M and Meuris M 2009 J. Electrochem. Soc. 156 G163
[29] Kuzum D, Krishnamohan T, Pethe A J, Okyay A K, Oshima Y, Sun Y, McVittie J P, Pianetta P A, McIntyre P C and Saraswat K C 2008 IEEE Electron Dev. Lett. 29 328
[30] Yang X, Wang S K, Zhang X, Sun B, Zhao W, Chang H D, Zeng Z H and Liu H 2014 Appl. Phys. Lett 105 092101
[31] Wang X L, Xiang J J, Wang W W, Xiong Y H, Zhang J and Zhao C 2015 Appl. Surf. Sci. 357 1857
[32] Fukuda Y, Yazaki Y, Otani Y, Sato T, Toyota H and Ono T 2010 IEEE Trans. Electron Dev. 57 282
[33] Zhang R, Iwasaki T, Taoka N, Takenaka M and Takagi S 2012 IEEE Trans. Electron Dev. 59 335
[34] Takenaka M, Zhang R and Takagi S 2013 Reliability Physics Symposium (IRPS) 4C.1.1-4C.1.8
[35] Takagi S, Zhang R and Takenaka M 2013 Microelectron. Eng. 109 389
[36] Zhang R, Lin J C, Yu X, Takenaka M and Takagi S 2013 Microelectron. Eng. 109 97
[37] Zhang R, Huang P C, Lin J C, Takenaka M and Takagi S 2013 Appl. Phys. Lett. 102 081603
[38] Zhang R, Huang P C, Lin J C, Taoka N, Takenaka M and Takagi S 2013 IEEE Trans. Electron Dev. 60 927
[39] Takahashi T, Nishimura T, Chen L, Sakata S, Kita K and Toriumi A 2007 IEEE Int. Electron Devices Meeting, p. 697
[40] Hattori T and Suzuki T 1983 Appl. Phys. Lett. 43 470
[41] Zhang R, Chern W, Yu X, Takenaka M, Hoyt J L and Takagi S 2013 IEEE Int. Electron Devices Meeting, 26.1.1-26.1.4
[42] Zhang R, Lin J C, Yu X, Takenaka M and Takagi S 2013 Symp. VLSI Technology, pp. T26-T27
[43] Zhang R, Huang P C, Lin J C, Takenaka M and Takagi S 2012 IEEE Int. Electron Devices Meeting, pp. 371-374
[44] Hosoi T, Kutsuki K, Okamoto G, Saito M, Shimura T and Watanabe H 2009 Appl. Phys. Lett. 94 202112
[45] Ogawa S, Suda T, Yamamoto T, Kutsuki K, Hideshima I, Hosoi T, Shimura T and Watanabe H 2011 Appl. Phys. Lett. 99 142101
[46] Fukuda Y, Ueno T, Hirono S and Hashimoto S 2005 Jpn. J. Appl. Phys. 44 6981
[47] Kimihiko K, Kyogoku S, Sakashita M, Takeuchi W, Kondo H, Takeuchi S, Nakatsuka O and Zaima S 2011 Jpn. J. Appl. Phys. 50 10PE02
[48] Sun S, Sun Y, Liu Z, Lee D I and Pianetta P 2006 Appl. Phys. Lett. 89 231925
[49] Renault O, Fourdrinier L, Martinez E, Clavelier L, Leroyer C, Barrett N and Crotti C 2007 Appl. Phys. Lett. 90 052112
[50] Kato K, Kyogoku S, Sakashita M, Takeuchi W, Kondo H, Takeuchi S, Nakatsuka O and Zaima S 2011 Jpn. J. Appl. Phys. 50 10PE02
[51] Sahari S K, Murakami H, Fujioka T, Bando T, Ohta A, Makihara K, Higashi S and Miyazaki S 2011 J. Appl. Phys. 50 04DA12
[52] Wang X L, Zhao Z Q, Xiang J J, Wang W W, Zhang J, Zhao C and Ye T C 2016 Appl. Surf. Sci. 390 472
[53] Glinnemann J, King H E Jr, Schulz H, Hahn Th, La Placa S J and Dacol F 1992 Z. Kristall.-Cryst. Mater. 198 177
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[4] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[5] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[6] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[7] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[8] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[9] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[10] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[11] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[12] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[13] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[14] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[15] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
No Suggested Reading articles found!