Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067901    DOI: 10.1088/1674-1056/26/6/067901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Graphene/Mo2C heterostructure directly grown by chemical vapor deposition

Rongxuan Deng(邓荣轩)1,2, Haoran Zhang(张浩然)1,2, Yanhui Zhang(张燕辉)1, Zhiying Chen(陈志蓥)1, Yanping Sui(隋妍萍)1, Xiaoming Ge(葛晓明)1,2, Yijian Liang(梁逸俭)1,2, Shike Hu(胡诗珂)1,2, Guanghui Yu(于广辉)1, Da Jiang(姜达)1
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Graphene-based heterostructure is one of the most attractive topics in physics and material sciences due to its intriguing properties and applications. We report the one-step fabrication of a novel graphene/Mo2C heterostructure by using chemical vapor deposition (CVD). The composition and structure of the heterostructure are characterized through energy-dispersive spectrometer, transmission electron microscope, and Raman spectrum. The growth rule analysis of the results shows the flow rate of methane is a main factor in preparing the graphene/Mo2C heterostructure. A schematic diagram of the growth process is also established. Transport measurements are performed to study the superconductivity of the heterostructure which has potential applications in superconducting devices.
Keywords:  graphene/Mo2C heterostructure      CVD      methane flow rate      superconductivity  
Received:  10 January 2017      Revised:  28 February 2017      Accepted manuscript online: 
PACS:  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  81.05.ue (Graphene)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  74.70.-b (Superconducting materials other than cuprates)  
Corresponding Authors:  Guanghui Yu, Da Jiang     E-mail:  ghyu@mail.sim.ac.cn;jiangda@mail.sim.ac.cn

Cite this article: 

Rongxuan Deng(邓荣轩), Haoran Zhang(张浩然), Yanhui Zhang(张燕辉), Zhiying Chen(陈志蓥), Yanping Sui(隋妍萍), Xiaoming Ge(葛晓明), Yijian Liang(梁逸俭), Shike Hu(胡诗珂), Guanghui Yu(于广辉), Da Jiang(姜达) Graphene/Mo2C heterostructure directly grown by chemical vapor deposition 2017 Chin. Phys. B 26 067901

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[3] Mattevi C, Kim H and Chhowalla M 2011 J. Mater. Chem. 21 3324
[4] Li X S, Cai W W, Colombo L and Ruoff R S 2009 Nano Lett. 9 4268
[5] Bhimanapati G R, Lin Z, Meunier V, et al. 2015 ACS Nano 9 11509
[6] Le Lay G, Salomon E, De Padova P, Layet J M and Angot T 2014 Aust. J. Chem. 67 1370
[7] Nguyen H, Huang C F, Luo W J, Xia G R, Chen Z Q, Li Z Q, Raymond C, Doyle D and Zhao F 2016 Mater. Lett. 168 1
[8] Zhang S Y, Zhang P G, Xie A J, Li S K, Huang F Z and Shen Y H 2016 Electrochim. Acta 212 912
[9] Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M and Ren W C 2015 Nat. Mater. 14 1135
[10] Meshkian R, Naslund L A, Halim J, Lu J, Barsoum M W and Rosen J 2015 Scripta Mater. 108 147
[11] Meyer S, Nikiforov A V, Petrushina I M, Kohler K, Christensen E, Jensen J O and Bjerrum N J 2015 Int. J. Hydrogen Energy 40 2905
[12] Willens R H, Buehler E and Matthias B T 1967 Phys. Rev. 159 327
[13] Cakir D, Sevik C, Gulseren O and Peeters F M 2016 J. Mater. Chem. A 4 6029
[14] Wang L B, Xu C, Liu Z B, Chen L, Ma X L, Cheng H M, Ren W C and Kang N 2016 ACS Nano 10 4504
[15] Bertolazzi S, Krasnozhon D and Kis A 2013 ACS Nano 7 3246
[16] Tsai M L, Su S H, Chang J K, Tsai D S, Chen C H, Wu C I, Li L J, Chen L J and He J H 2014 ACS Nano 8 8317
[17] Wang X M, Cheng Z Z, Xu K, Tsang H K and Xu J B 2013 Nat. Photon. 7 888
[18] Su W J, Chang H C, Shih Y T, Wang Y P, Hsu H P, Huang Y S and Lee K Y 2016 J. Alloys Compd. 671 276
[19] Huang J, Guo L W, Lu W, Zhang Y H, Shi Z, Jia Y P, Li Z L, Yang J W, Chen H X, Mei Z X and Chen X L 2016 Chin. Phys. B 25 067205
[20] Ni G X, Wang L, Goldflam M D, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, O.; zyilmaz B, Castro Neto A H, Hone J, Fogler M M and Basov D N 2016 Nat. Photon. 10 244
[21] Ni G X, Zheng Y, Bae S, Tan C Y, Kahya O, Wu J, Hong B H, Yao K and Ozyilmaz B 2012 ACS Nano 6 3935
[22] Ni G X, Wang H, Wu J S, Fei Z, Goldflam M D, Keilmann F, Ozyilmaz B, Castro Neto A H, Xie X M, Fogler M M and Basov D N 2015 Nat. Mater. 14 1217
[23] Cao N T, Zhang L, Lü Lu, Xie H P, Huang H, Niu D Mei and Gao Y L 2014 Acta Phys. Sin. 63 167903 (in Chinese)
[24] Jiang D, Hu T, You L X, Li Q, Li A, Wang H M, Mu G, Chen Z Y, Zhang H R, Yu G H, Zhu J, Sun Q J, Lin C T, Xiao H, Xie X M and Jiang M H 2014 Nat. Commun. 5 5708
[25] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359
[26] Liu N, Pan Z H, Fu L, Zhang C H, Dai B Y and Liu Z F 2011 Nano Res. 4 996
[27] Fan Y, He K, Tan H J, Speller S and Warner J H 2014 Chem. Mater. 26 4984
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[5] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[6] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[7] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[8] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[9] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[10] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[14] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[15] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
No Suggested Reading articles found!