CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Graphene/Mo2C heterostructure directly grown by chemical vapor deposition |
Rongxuan Deng(邓荣轩)1,2, Haoran Zhang(张浩然)1,2, Yanhui Zhang(张燕辉)1, Zhiying Chen(陈志蓥)1, Yanping Sui(隋妍萍)1, Xiaoming Ge(葛晓明)1,2, Yijian Liang(梁逸俭)1,2, Shike Hu(胡诗珂)1,2, Guanghui Yu(于广辉)1, Da Jiang(姜达)1 |
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Graphene-based heterostructure is one of the most attractive topics in physics and material sciences due to its intriguing properties and applications. We report the one-step fabrication of a novel graphene/Mo2C heterostructure by using chemical vapor deposition (CVD). The composition and structure of the heterostructure are characterized through energy-dispersive spectrometer, transmission electron microscope, and Raman spectrum. The growth rule analysis of the results shows the flow rate of methane is a main factor in preparing the graphene/Mo2C heterostructure. A schematic diagram of the growth process is also established. Transport measurements are performed to study the superconductivity of the heterostructure which has potential applications in superconducting devices.
|
Received: 10 January 2017
Revised: 28 February 2017
Accepted manuscript online:
|
PACS:
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
81.05.ue
|
(Graphene)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
Corresponding Authors:
Guanghui Yu, Da Jiang
E-mail: ghyu@mail.sim.ac.cn;jiangda@mail.sim.ac.cn
|
Cite this article:
Rongxuan Deng(邓荣轩), Haoran Zhang(张浩然), Yanhui Zhang(张燕辉), Zhiying Chen(陈志蓥), Yanping Sui(隋妍萍), Xiaoming Ge(葛晓明), Yijian Liang(梁逸俭), Shike Hu(胡诗珂), Guanghui Yu(于广辉), Da Jiang(姜达) Graphene/Mo2C heterostructure directly grown by chemical vapor deposition 2017 Chin. Phys. B 26 067901
|
[1] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[2] |
Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
|
[3] |
Mattevi C, Kim H and Chhowalla M 2011 J. Mater. Chem. 21 3324
|
[4] |
Li X S, Cai W W, Colombo L and Ruoff R S 2009 Nano Lett. 9 4268
|
[5] |
Bhimanapati G R, Lin Z, Meunier V, et al. 2015 ACS Nano 9 11509
|
[6] |
Le Lay G, Salomon E, De Padova P, Layet J M and Angot T 2014 Aust. J. Chem. 67 1370
|
[7] |
Nguyen H, Huang C F, Luo W J, Xia G R, Chen Z Q, Li Z Q, Raymond C, Doyle D and Zhao F 2016 Mater. Lett. 168 1
|
[8] |
Zhang S Y, Zhang P G, Xie A J, Li S K, Huang F Z and Shen Y H 2016 Electrochim. Acta 212 912
|
[9] |
Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M and Ren W C 2015 Nat. Mater. 14 1135
|
[10] |
Meshkian R, Naslund L A, Halim J, Lu J, Barsoum M W and Rosen J 2015 Scripta Mater. 108 147
|
[11] |
Meyer S, Nikiforov A V, Petrushina I M, Kohler K, Christensen E, Jensen J O and Bjerrum N J 2015 Int. J. Hydrogen Energy 40 2905
|
[12] |
Willens R H, Buehler E and Matthias B T 1967 Phys. Rev. 159 327
|
[13] |
Cakir D, Sevik C, Gulseren O and Peeters F M 2016 J. Mater. Chem. A 4 6029
|
[14] |
Wang L B, Xu C, Liu Z B, Chen L, Ma X L, Cheng H M, Ren W C and Kang N 2016 ACS Nano 10 4504
|
[15] |
Bertolazzi S, Krasnozhon D and Kis A 2013 ACS Nano 7 3246
|
[16] |
Tsai M L, Su S H, Chang J K, Tsai D S, Chen C H, Wu C I, Li L J, Chen L J and He J H 2014 ACS Nano 8 8317
|
[17] |
Wang X M, Cheng Z Z, Xu K, Tsang H K and Xu J B 2013 Nat. Photon. 7 888
|
[18] |
Su W J, Chang H C, Shih Y T, Wang Y P, Hsu H P, Huang Y S and Lee K Y 2016 J. Alloys Compd. 671 276
|
[19] |
Huang J, Guo L W, Lu W, Zhang Y H, Shi Z, Jia Y P, Li Z L, Yang J W, Chen H X, Mei Z X and Chen X L 2016 Chin. Phys. B 25 067205
|
[20] |
Ni G X, Wang L, Goldflam M D, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, O.; zyilmaz B, Castro Neto A H, Hone J, Fogler M M and Basov D N 2016 Nat. Photon. 10 244
|
[21] |
Ni G X, Zheng Y, Bae S, Tan C Y, Kahya O, Wu J, Hong B H, Yao K and Ozyilmaz B 2012 ACS Nano 6 3935
|
[22] |
Ni G X, Wang H, Wu J S, Fei Z, Goldflam M D, Keilmann F, Ozyilmaz B, Castro Neto A H, Xie X M, Fogler M M and Basov D N 2015 Nat. Mater. 14 1217
|
[23] |
Cao N T, Zhang L, Lü Lu, Xie H P, Huang H, Niu D Mei and Gao Y L 2014 Acta Phys. Sin. 63 167903 (in Chinese)
|
[24] |
Jiang D, Hu T, You L X, Li Q, Li A, Wang H M, Mu G, Chen Z Y, Zhang H R, Yu G H, Zhu J, Sun Q J, Lin C T, Xiao H, Xie X M and Jiang M H 2014 Nat. Commun. 5 5708
|
[25] |
Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359
|
[26] |
Liu N, Pan Z H, Fu L, Zhang C H, Dai B Y and Liu Z F 2011 Nano Res. 4 996
|
[27] |
Fan Y, He K, Tan H J, Speller S and Warner J H 2014 Chem. Mater. 26 4984
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|