CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Semipolar (1122) and polar (0001) InGaN grown on sapphire substrate by using pulsed metal organic chemical vapor deposition |
Sheng-Rui Xu(许晟瑞), Ying Zhao(赵颖), Ren-Yuan Jiang(蒋仁渊), Teng Jiang(姜腾), Ze-Yang Ren(任泽阳), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) |
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract High indium semipolar (1122) and polar (0001) InGaN layers each with a thickness of about 100 nm are realized simultaneously on sapphire substrates by pulsed metal organic chemical vapor deposition (MOCVD). The morphology evolution, structural and optical characteristics are also studied. The indium content in the layer of the surface (1122) is larger than that of the surface (0001), which is confirmed by reciprocal space map, photoluminescence spectrum and secondary ion mass spectrometer. Additionally, the (0001) surface with island-like morphology shows inhomogeneous indium incorporation, while the (1122) surface with a spiral-like morphology shows a better homogeneous In composition. This feature is also demonstrated by the monochromatic cathodoluminescence map.
|
Received: 29 September 2016
Revised: 08 November 2016
Accepted manuscript online:
|
PACS:
|
78.55.Cr
|
(III-V semiconductors)
|
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61204006 and 61574108) and the Fundamental Research Funds for the Central Universities, China (Grant No. 7214570101). |
Corresponding Authors:
Sheng-Rui Xu, Jin-Cheng Zhang
E-mail: shengruixidian@126.com;jchzhang@xidian.edu.cn
|
Cite this article:
Sheng-Rui Xu(许晟瑞), Ying Zhao(赵颖), Ren-Yuan Jiang(蒋仁渊), Teng Jiang(姜腾), Ze-Yang Ren(任泽阳), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) Semipolar (1122) and polar (0001) InGaN grown on sapphire substrate by using pulsed metal organic chemical vapor deposition 2017 Chin. Phys. B 26 027801
|
[1] |
Wei T B, Hu Q, Duan R F, Wei X C, Huo Z Q, Wang J X, Zeng Y P, Wang G H and Li J M 2009 J. Cryst. Growth 311 4153
|
[2] |
Xu S R, Hao Y, Zhang J C, Xue X Y, Li P X, Li J T, Lin Z Y, Liu Z Y, Ma J C, He Q and Lv L 2011 Chin. Phys. B 20 107802
|
[3] |
Xu S R, Hao Y, Zhang J C, Zhou X W, Cao Y R, Ou X X, Mao W, Du D C and Wang H 2010 Chin. Phys. B 19 107204
|
[4] |
Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, Ramsteiner M, Reiche M and Ploog K H 2000 Nature 406 865
|
[5] |
Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L and Lin Z Y 2013 Nano Lett. 13 365
|
[6] |
Okamoto K, Kashiwagi J, Tanaka T and Kubota M 2009 Appl. Phys. Lett. 94 071105
|
[7] |
Enya Y, Yoshizumi Y, Kyono T, Akita K, Ueno M, Adachi M, Sumitomo T, Tokuyama S, Ikegami T, Katayama K and Nakamura T 2009 Appl. Phys. Express 2 082101
|
[8] |
Kyono T, Yoshizumi Y, Enya Y, Adachi M, Tokuyama S, Ueno M, Katayama K and Nakamura T 2010 Appl. Phys. Express 3 011003
|
[9] |
Yamamoto S, Zhao Y, Pan C C, Chung R B, Fujito K, Sonoda J, Denbaars S P and Nakamura S 2010 Appl. Phys. Express 3 122102
|
[10] |
Zhao Y, Tanaka T, Yan Q, Huang C Y, Chung R B, Pan C C, Fujito K, Feezell D, Walle C G V, Speck J S, DenBaars S P and Nakamura S 2011 Appl. Phys. Lett. 99 051109
|
[11] |
Zhao Y, Tanaka S, Pan C C, Fujito K, Feezell D, Speck J S, DenBaars S P and Nakamura S 2011 Appl. Phys. Express 4 082104
|
[12] |
Funato M, Ueda M, Kawakami Y, Narukawa Y, Kosugi T, Takahashi M and Mukai T 2006 Jpn. J. Appl. Phys. 45 L659
|
[13] |
Xu S R, Zhao Y, Jiang T, Zhang J C, Li P X and Hao Y 2016 Chin. Phys. Lett. 33 068102
|
[14] |
Lee S N, Kim K K, Nam O H, Kim J H and Kim H 2010 Phys. Status Solidi B 7 2043
|
[15] |
Oh D S, Jong J J, Nam O, Song K M and Lee S M 2011 J. Cryst. Growth 326 33
|
[16] |
Benjamin L, Wang D, Sheng K Y and Han J 2015 Phys. Status Solidi B 9 13
|
[17] |
Zhang Y C, Zhou X W, Xu S R, Zhang J F, Zhang J C and HaoY 2016 Appl. Phys. Express 9 061003
|
[18] |
Zhang Y C, Zhou X W, Xu S R, Wang Z Z, Zhao Y, Zhang J F, Chen D Z, Zhang J C and HaoY 2015 Appl. Phys. Lett. 106 152101
|
[19] |
Ploch S, Wernicke T, Dinh D V, Pristovsek M and Kneissl M 2012 J. Appl. Phys. 111 033526
|
[20] |
Neugebauer J 2001 Phys. Status Solidi B 227 93
|
[21] |
Vickers M E, Kappers M J, Datta R, Mcaleese C, Smeeton T M and Rayment F D G 2005 J. Phys. D: Appl. Phys. 38 99
|
[22] |
Romanov A E, Young E C, Wu F, Anurag T, Gallinat C S, Nakamura S, DenBaars S P and Speck J S 2012 J. Appl. Phys. 109 103522
|
[23] |
Schuster M, Gervais P O, Jobst B, Hösler W, Averbeck R, Riechert H, Iberl A and Stömmer R 1999 J. Phys. D: Appl. Phys. 32 56
|
[24] |
Pereira S, Correia M R, Pereira E, O'Donnell K P, Martin R W, White M E, Alves E, Sequeira A D and Franco N 2002 Mater. Sci. Eng. B 93 163
|
[25] |
Bhat R and Guryanov G M 2015 J. Cryst. Growth 433 7
|
[26] |
Selke H, Amirsawadkouhi M, Ryder P L, Böttcher T, Einfeldt S, Hommel D and Bertram F 1999 J. Christen. Mater. Sci. Eng. B 59 279
|
[27] |
Damilano B and Gil B 2015 J. Phys. D: Appl. Phys. 48 403001
|
[28] |
D O Demchenko, I C Diallo and M A Reshchikov 2016 J. Appl. Phys. 119 035702
|
[29] |
Northrup J E 2009 Appl. Phys. Lett. 95 133107
|
[30] |
Yayama T, Kangawa Y, Kakimoto K and Koukitu A 2013 Jpn. J. Appl. Phys. 45 08JC02
|
[31] |
Durnev M V, Omelchenko A V, Yakovlev E V, Evstratov I Y and Karpov S Y 2011 Phys. Status Solidi A 208 2671
|
[32] |
Dinh D V, Pristovsek M and Kneissl M 2015 Phys. Status Solidi B 8 1
|
[33] |
Dinh D V, Oehler F, Zubialevich V Z, Kappers M J, Alam S N, Caliebe M, Scholtz F, Humphreys C J and Parbrook P J 2014 J. Appl. Phys. 116 153505
|
[34] |
Wernicke T, Schade L, Netzel C, Rass J, Hoffmann V, Ploch S, Knauer A, Weyers M, Schwarz U and Kneissl M 2012 Semicond. Sci. Technol. 27 024014
|
[35] |
Browne D A, Young E C, Lang J R, Hurni1C A and Speck J S 2012 J. Vac. Sci. Technol. A 30 041513
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|