Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 127302    DOI: 10.1088/1674-1056/25/12/127302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement

Sami Ortakaya1, Muharrem Kirak2
1. Department of Physics, Erciyes University, 38039 Kayseri, Turkiye;
2. Faculty of Education, Bozok University, 66200 Yozgat, Turkiye
Abstract  

The influence of hydrostatic pressure, temperature, and impurity on the electronic and optical properties of spherical core/shell/well/shell (CSWS) nanostructure with parabolic confinement potential is investigated theoretically. The energy levels and wave functions of the structure are calculated by using shooting method within the effective-mass approximation. The numerical results show that the ground state donor binding energy as a function layer thickness very sensitively depends on the magnitude of pressure and temperature. Also, we investigate the probability distributions to understand clearly electronic properties. The obtained results show that the existence of the pressure and temperature has great influence on the electronic and optical properties.

Keywords:  multilayers      impurity      pressure      nonlinear optics  
Received:  02 March 2016      Revised:  22 June 2016      Accepted manuscript online: 
PACS:  73.21.Ac (Multilayers)  
  62.50.-p (High-pressure effects in solids and liquids)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  42.65.-k (Nonlinear optics)  
Corresponding Authors:  Muharrem Kirak     E-mail:  muharrem.kirak@bozok.edu.tr

Cite this article: 

Sami Ortakaya, Muharrem Kirak Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement 2016 Chin. Phys. B 25 127302

[1] Suseendran J, Halder N, Chakrabarti S, Mishima T D and Stanley C R 2009 Superlatt. Microstruct. 46 900
[2] Adhikary S, Halder N, Chakrabarti S, Majumdar S, Ray S K, Herrera M, Bonds M and Browning N D 2010 J. Cryst. Growth 312 724
[3] Aktas S and Boz F K 2008 Physica E 40 753
[4] Baskoutas S and Terzis A F 2008 Physica E 40 1367
[5] Poghosyan B Z and Demirjian G H 2003 Physica B 338 357
[6] Li S S and Xia J B 2007 J. Appl. Phys. 101 093716
[7] Chakrabarti S, StiffRoberts A D, Bhattacharya P, Gunapala S, Rafol S B and Kennerly S W 2004 IEEE Photon. Technol. Lett. 16 1361
[8] Pan D, Towe E and Kennerly S 1999 Appl. Phys. Lett. 75 2719
[9] Liu H Y, Liew S L, Badcock T, Mowbray D J, Skolnick M S, Ray S K, Choi T L, Groom K M, Stevens B, Hasbullah F, Jin C Y, Hopkinson M and Hogg R A 2006 Appl. Phys. Lett. 89 073113
[10] Badcock T J, Liu H Y, Groom K M, Jin C Y, Gutierrez M, Hopkinson M, Mowbray D J and Skolnick M S 2006 IEEE Elecron. Lett. 42 922
[11] Mews A, Eychmuller A, Giersig M, Schooss D and Weller H 1994 J. Chem. Phys. 82 552
[12] Dorfs D and Eychmuller A 2001 Nano Lett. 1 663
[13] Nanda J, Ivanov S A, Htoon H, Bezel I, Piryatinski A, Tretiak S and Kilmov I V 2006 J. Appl. Phys. 99 034309
[14] Changyu S 2008 Proc. SPIE 7138 71382E
[15] Dias E A, Sewall S L and Kambhampati P 2007 J. Phys. Chem. C 111 708
[16] Bastard G 1981 Phys. Rev. B 24 4714
[17] Yilmaz S and Safak H 2007 Physica E 36 40
[18] Xie W 2010 Superlatt. Microstruct. 48 239
[19] Sahin M 2008 Phys. Rev. B 77 045317
[20] Khordad R 2009 Physica E 41 543
[21] Kasapoglu E, Ungan F, Sari H and Sokmen I 2010 Physica E 42 1623
[22] Barseghyan M G, Hakimyfard A, Lopez S Y, Duque C A and Kirakosyan A A 2010 Physica E 43 529
[23] Yesilgul U, Kasapoglu E and Sari H and Sokmen I 2010 Superlatt. Microstruct. 48 509
[24] Rezaei G, Kish S S 2012 Physica E 45 56
[25] Arunachalam N, Peter A J and Lee C W 2011 Physica E 44 222
[26] Karabulut I, Mora-Ramos M E and Duque C A 2011 J. Lumin. 131 1502
[27] Rezaei G and Doostimotlagh N A 2012 Physica E 44 833
[28] Rezaei G, Mousavi S and Sadeghi E 2012 Physica B 407 2637
[29] Kavruk A E, Sahin M and Koc F 2013 J. Appl. Phys. 114 183704
[30] Boz F K, Aktas S, Bilekkaya A and Okan S E 2009 Appl. Surf. Sci. 255 6561
[31] Boz F K, Aktas S, Bilekkaya A and Okan S E 2010 Appl. Surf. Sci. 256 3836
[32] Tas H and Sahin M 2012 J. Appl. Phys. 111 083702
[33] Kavruk A E, Sahin M and Atav U 2014 J. Phys. D:Appl. Phys. 47 295302
[34] Sahin M, Tek F and Erdinc A 2012 J. Appl. Phys. 111 084317
[35] Sahin M and Koksal K 2012 Semicond. Sci. Technol. 27 125011
[36] Karimi M J, Rezaei G and Nazari M 2014 J. Lumin. 145 55
[37] Salini K, Rahul K S and Mathew V 2014 Appl. Phys. A 116 1371
[38] Akgul S, Sahin M and Koksal K 2012 J. Lumin. 132 1705
[39] Welber B, Cardona M, Kim C K and Rodriquez S 1975 Phys. Rev. B 12 5729
[40] Adachi S 1985 J. Appl. Phys. 58 R1
[41] Aspnes D E 1976 Phys. Rev. B 14 5331
[42] Mora-Ramos M E, Lopez S Y and Duque C A 2008 Eur. Phys. J. B 62 257
[43] Samara G A 1983 Phys. Rev. B 27 3494
[44] Yu P Y and Cardona M 2010 Fundamentals of Semiconductors, 2nd edn. (Berlin/Heidelberg:Springer)
[45] Guanghui L and Kangxian G 2007 Optik 126 3807
[46] Sahin M 2009 J. Appl. Phys. 106 063710
[47] Karabulut I and Baskoutas S 2008 J. Appl. Phys. 103 073512
[48] Akbarnavaz Farkoush B, Safarpour Gh and Zamani A 2013 Superlatt. Microstruct. 59 66
[49] Liang S and Xie W 2011 Physica B 406 2224
[50] Ozmen A, Yakar Y, Cakir B and Atav U 2009 Opt. Commun. 282 3999
[51] Blakemore J S 1982 J. Appl. Phys. 53 R123 and references therein
[52] Aspnes D E and Studna A A 1973 Phys. Rev. B 7 4605
[53] Thurmond C D 1975 J. Electrochem. Soc. 122 1133
[54] Wolford D J and Bradley J A 1985 Solid State Commun. 53 1069
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[3] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[4] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[5] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[6] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[7] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[8] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[9] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[10] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
[11] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[12] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[13] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
No Suggested Reading articles found!