CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement |
Sami Ortakaya1, Muharrem Kirak2 |
1. Department of Physics, Erciyes University, 38039 Kayseri, Turkiye;
2. Faculty of Education, Bozok University, 66200 Yozgat, Turkiye |
|
|
Abstract The influence of hydrostatic pressure, temperature, and impurity on the electronic and optical properties of spherical core/shell/well/shell (CSWS) nanostructure with parabolic confinement potential is investigated theoretically. The energy levels and wave functions of the structure are calculated by using shooting method within the effective-mass approximation. The numerical results show that the ground state donor binding energy as a function layer thickness very sensitively depends on the magnitude of pressure and temperature. Also, we investigate the probability distributions to understand clearly electronic properties. The obtained results show that the existence of the pressure and temperature has great influence on the electronic and optical properties.
|
Received: 02 March 2016
Revised: 22 June 2016
Accepted manuscript online:
|
PACS:
|
73.21.Ac
|
(Multilayers)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Corresponding Authors:
Muharrem Kirak
E-mail: muharrem.kirak@bozok.edu.tr
|
Cite this article:
Sami Ortakaya, Muharrem Kirak Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement 2016 Chin. Phys. B 25 127302
|
[1] |
Suseendran J, Halder N, Chakrabarti S, Mishima T D and Stanley C R 2009 Superlatt. Microstruct. 46 900
|
[2] |
Adhikary S, Halder N, Chakrabarti S, Majumdar S, Ray S K, Herrera M, Bonds M and Browning N D 2010 J. Cryst. Growth 312 724
|
[3] |
Aktas S and Boz F K 2008 Physica E 40 753
|
[4] |
Baskoutas S and Terzis A F 2008 Physica E 40 1367
|
[5] |
Poghosyan B Z and Demirjian G H 2003 Physica B 338 357
|
[6] |
Li S S and Xia J B 2007 J. Appl. Phys. 101 093716
|
[7] |
Chakrabarti S, StiffRoberts A D, Bhattacharya P, Gunapala S, Rafol S B and Kennerly S W 2004 IEEE Photon. Technol. Lett. 16 1361
|
[8] |
Pan D, Towe E and Kennerly S 1999 Appl. Phys. Lett. 75 2719
|
[9] |
Liu H Y, Liew S L, Badcock T, Mowbray D J, Skolnick M S, Ray S K, Choi T L, Groom K M, Stevens B, Hasbullah F, Jin C Y, Hopkinson M and Hogg R A 2006 Appl. Phys. Lett. 89 073113
|
[10] |
Badcock T J, Liu H Y, Groom K M, Jin C Y, Gutierrez M, Hopkinson M, Mowbray D J and Skolnick M S 2006 IEEE Elecron. Lett. 42 922
|
[11] |
Mews A, Eychmuller A, Giersig M, Schooss D and Weller H 1994 J. Chem. Phys. 82 552
|
[12] |
Dorfs D and Eychmuller A 2001 Nano Lett. 1 663
|
[13] |
Nanda J, Ivanov S A, Htoon H, Bezel I, Piryatinski A, Tretiak S and Kilmov I V 2006 J. Appl. Phys. 99 034309
|
[14] |
Changyu S 2008 Proc. SPIE 7138 71382E
|
[15] |
Dias E A, Sewall S L and Kambhampati P 2007 J. Phys. Chem. C 111 708
|
[16] |
Bastard G 1981 Phys. Rev. B 24 4714
|
[17] |
Yilmaz S and Safak H 2007 Physica E 36 40
|
[18] |
Xie W 2010 Superlatt. Microstruct. 48 239
|
[19] |
Sahin M 2008 Phys. Rev. B 77 045317
|
[20] |
Khordad R 2009 Physica E 41 543
|
[21] |
Kasapoglu E, Ungan F, Sari H and Sokmen I 2010 Physica E 42 1623
|
[22] |
Barseghyan M G, Hakimyfard A, Lopez S Y, Duque C A and Kirakosyan A A 2010 Physica E 43 529
|
[23] |
Yesilgul U, Kasapoglu E and Sari H and Sokmen I 2010 Superlatt. Microstruct. 48 509
|
[24] |
Rezaei G, Kish S S 2012 Physica E 45 56
|
[25] |
Arunachalam N, Peter A J and Lee C W 2011 Physica E 44 222
|
[26] |
Karabulut I, Mora-Ramos M E and Duque C A 2011 J. Lumin. 131 1502
|
[27] |
Rezaei G and Doostimotlagh N A 2012 Physica E 44 833
|
[28] |
Rezaei G, Mousavi S and Sadeghi E 2012 Physica B 407 2637
|
[29] |
Kavruk A E, Sahin M and Koc F 2013 J. Appl. Phys. 114 183704
|
[30] |
Boz F K, Aktas S, Bilekkaya A and Okan S E 2009 Appl. Surf. Sci. 255 6561
|
[31] |
Boz F K, Aktas S, Bilekkaya A and Okan S E 2010 Appl. Surf. Sci. 256 3836
|
[32] |
Tas H and Sahin M 2012 J. Appl. Phys. 111 083702
|
[33] |
Kavruk A E, Sahin M and Atav U 2014 J. Phys. D:Appl. Phys. 47 295302
|
[34] |
Sahin M, Tek F and Erdinc A 2012 J. Appl. Phys. 111 084317
|
[35] |
Sahin M and Koksal K 2012 Semicond. Sci. Technol. 27 125011
|
[36] |
Karimi M J, Rezaei G and Nazari M 2014 J. Lumin. 145 55
|
[37] |
Salini K, Rahul K S and Mathew V 2014 Appl. Phys. A 116 1371
|
[38] |
Akgul S, Sahin M and Koksal K 2012 J. Lumin. 132 1705
|
[39] |
Welber B, Cardona M, Kim C K and Rodriquez S 1975 Phys. Rev. B 12 5729
|
[40] |
Adachi S 1985 J. Appl. Phys. 58 R1
|
[41] |
Aspnes D E 1976 Phys. Rev. B 14 5331
|
[42] |
Mora-Ramos M E, Lopez S Y and Duque C A 2008 Eur. Phys. J. B 62 257
|
[43] |
Samara G A 1983 Phys. Rev. B 27 3494
|
[44] |
Yu P Y and Cardona M 2010 Fundamentals of Semiconductors, 2nd edn. (Berlin/Heidelberg:Springer)
|
[45] |
Guanghui L and Kangxian G 2007 Optik 126 3807
|
[46] |
Sahin M 2009 J. Appl. Phys. 106 063710
|
[47] |
Karabulut I and Baskoutas S 2008 J. Appl. Phys. 103 073512
|
[48] |
Akbarnavaz Farkoush B, Safarpour Gh and Zamani A 2013 Superlatt. Microstruct. 59 66
|
[49] |
Liang S and Xie W 2011 Physica B 406 2224
|
[50] |
Ozmen A, Yakar Y, Cakir B and Atav U 2009 Opt. Commun. 282 3999
|
[51] |
Blakemore J S 1982 J. Appl. Phys. 53 R123 and references therein
|
[52] |
Aspnes D E and Studna A A 1973 Phys. Rev. B 7 4605
|
[53] |
Thurmond C D 1975 J. Electrochem. Soc. 122 1133
|
[54] |
Wolford D J and Bradley J A 1985 Solid State Commun. 53 1069
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|