Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 127102    DOI: 10.1088/1674-1056/25/12/127102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Band offsets engineering at CdxZn1-xS/Cu2ZnSnS4 heterointerface

Wujisiguleng Bao(包乌吉斯古楞)1, Sachuronggui(萨初荣贵)2, Fang-Yuan Qiu(仇方圆)1
1. College of New Energy, Bohai University, Jinzhou 121013, China;
2. College of Engineering, Bohai University, Jinzhou 121013, China
Abstract  

Cd1-xZnxS/Cu2ZnSnS4 (CZTS)-based thin film solar cells usually use CdS as a buffer layer, but due to its smaller band gap (2.4 eV), CdS film has been replaced with higher band gap materials. The cadmium zinc sulfide (CdZnS) ternary compound has a higher band gap than other compounds, which leads to a decrease in window absorption loss. In this paper, the band offsets at Cd1-xZnxS/Cu2ZnSnS4 (CZTS) heterointerface are calculated by the first-principles, density-functional and pseudopotential method. The band offsets at Cd1-xZnxS/CZTS heterointerface are tuned by controlling the composition of Zn in Cd1-xZnxS alloy, the calculated valence band offsets are small, which is consistent with the common-anion rule. The favorable heterointerface of type-I with a moderate barrier height (<0.3 eV) can be obtained by controlling the composition of Zn in Cd1-xZnxS alloy between 0.25 and 0.375.

Keywords:  band offset      first-principles calculation      Cd1-xZnxS      heterointerface  
Received:  05 June 2016      Revised:  06 September 2016      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.40.-c (Electronic transport in interface structures)  
  71.55.Gs (II-VI semiconductors)  
Fund: 

Project supported by the Special Funds of the National Natural Science Foundation of China (Grant Nos. 11547226 and 11547180).

Corresponding Authors:  Wujisiguleng Bao     E-mail:  baowujisgl@bhu.edu.cn

Cite this article: 

Wujisiguleng Bao(包乌吉斯古楞), Sachuronggui(萨初荣贵), Fang-Yuan Qiu(仇方圆) Band offsets engineering at CdxZn1-xS/Cu2ZnSnS4 heterointerface 2016 Chin. Phys. B 25 127102

[1] Katagiri H 2005 Thin Solid Films 480-481 426
[2] Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Jay Chey S and Guha S 2013 Prog. Photovoltaics 21 72
[3] Wang W, Winkler M, Gunawan O, Gokmen T, Todorov T, Zhu Y and Mitzi D 2014 Adv. Energy Mater. 4 1301465
[4] Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A and Friedlmeier T M 2015 Phys. Status Solidi 9 28
[5] Bär M, Schubert B, Marsen B, Wilks R, Pookpanratana S, Blum M, Krause S, Unold T, Yang W, Weinhardt L, Heske C and Schock H W 2011 Appl. Phys. Lett. 99 222105
[6] Prem Kumar T, Saravana kumar S, Sankaranarayanan K 2011 Appl. Surf. Sci. 257 1923
[7] Al Kuhaimi S A and Tulbah Z 2000 J. Electrochem. Soc. 147 214
[8] Chen P, Nicholls J E, O'Neill M, Stirner T and Hogg J H C 1998 J. Appl. Phys. 84 5621
[9] Dmitrienko A O, Bukesov S A and Mikhailova V V 1993 Inorg. Mater. 29 960
[10] Salem A M 2002 Appl. Phys. A 74 205
[11] Barkhouse D A R, Haight R, Sakai N, Hiroi H, Sugimoto H and Mitzi D B 2012 Appl. Phys. Lett. 100 193904
[12] Nagoya A, Asahi R and Kresse G 2011 J. Phys.:Condes. Matter 23 404203
[13] Irvine S J C, Barrioz V, Lamb D, Jones E W and Rowlands-Jones R L 2008 J. Cryst. Growth 310 5198
[14] Peter A J and Chang W L 2012 Chin. Phys. B 21 087302
[15] Azizi S, Rezagholipour Dizaji H and Ehsani M H 2016 Optik-International Journal for Light and Electron Optics 127 7104
[16] Thahab S M, Omran Alkhayat A H and Saleh S M 2014 Mater. Sci. Semicond. Process. 26 49
[17] Bhattacharya R N, Contreras M A, Egaas B, Noufi R N, Kanevce A and Sites J R 2006 Appl. Phys. Lett. 89 253503
[18] Song J, Li S S, Chen L and Noufi R 2006 IEEE World Conference on Photovoltaic Energy Conference 1 534
[19] Singh J 1996 Optoelectronics:an introduction to materials and devices (New Delhi:Macgraw Hill)
[20] Sze S M 1969 Physics of Semiconductor Devices (New York:Wiley)
[21] http://www.ciss.iis.u-tokyo.ac.jp/rss21/en/index.html
[22] Perdew J P, Burke K and Ernzerholf M 1996 Phys. Rev. Lett. 77 3865
[23] Nelson A J, Schwerdtfeger C R, Wei S H, Zunger A, Rioux D, Patel R and Hochst H 1993 Appl. Phys. Lett. 62 2557
[24] Wei S H and Zunger A 1993 Appl. Phys. Lett. 63 2549
[25] Wei S H, Ren X, Han Z, Li T, Su Y, Wei L, Cong F and Zhang Y 2013 Mater. Lett. 102-103 94
[26] Wei S H and Zunger A 1988 Phys. Rev. B 37 8958
[27] Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T and Kitagawa M 2001 Sol. Energy Mater. Sol. Cells. 67 83
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!