Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 127101    DOI: 10.1088/1674-1056/25/12/127101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure of O-doped SiGe calculated by DFT+U method

Zong-Yan Zhao(赵宗彦)1,2, Wen Yang(杨雯)3, Pei-Zhi Yang(杨培志)3
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2. Yunnan Key Laboratory of Micro/Nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650504, China;
3. Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials(Ministry of Education), Yunnan Normal University, Kunming 650092, China
Abstract  

To more in depth understand the doping effects of oxygen on SiGe alloys, both the micro-structure and properties of O-doped SiGe (including:bulk, (001) surface, and (110) surface) are calculated by DFT+U method in the present work. The calculated results are as follows. (i) The (110) surface is the main exposing surface of SiGe, in which O impurity prefers to occupy the surface vacancy sites. (ii) For O interstitial doping on SiGe (110) surface, the existences of energy states caused by O doping in the band gap not only enhance the infrared light absorption, but also improve the behaviors of photo-generated carriers. (iii) The finding about decreased surface work function of O-doped SiGe (110) surface can confirm previous experimental observations. (iv) In all cases, O doing mainly induces the electronic structures near the band gap to vary, but is not directly involved in these variations. Therefore, these findings in the present work not only can provide further explanation and analysis for the corresponding underlying mechanism for some of the experimental findings reported in the literature, but also conduce to the development of μc-SiGe-based solar cells in the future.

Keywords:  SiGe alloys      O doping      electronic structure      density functional theory (DFT) calculations  
Received:  25 April 2016      Revised:  10 August 2016      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.20.Nr (Semiconductor compounds)  
  81.05.Hd (Other semiconductors)  
  82.20.Wt (Computational modeling; simulation)  
Fund: 

Project supported by the Natural Science Foundation of Yunnan Province, China (Grant No. 2015FB123), the 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project, China (Grant No. 2015HB015), and the National Natural Science Foundation of China (Grant No. U1037604).

Corresponding Authors:  Zong-Yan Zhao     E-mail:  zzy@kmust.edu.cn

Cite this article: 

Zong-Yan Zhao(赵宗彦), Wen Yang(杨雯), Pei-Zhi Yang(杨培志) Electronic structure of O-doped SiGe calculated by DFT+U method 2016 Chin. Phys. B 25 127101

[1] Hao J Y, Xu Y, Zhang Y P, Chen S F, Li X A, Wang L and Huang W 2015 Chin. Phys. B 24 045201
[2] Wang J Z, Huang Q L, Xu X, Quan B G, Luo J H, Zhang Y, Ye J S, Li D M, Meng Q B and Yang G Z 2015 Chin. Phys. B 24 054201
[3] Zhao S Q, Zhang J R, Shi H J, Yan K K, Huang C, Yang L M, Yang R and Zhao K 2016 Chin. Phys. B 25 027202
[4] Kamat P V 2007 J. Phys. Chem. C 111 2834
[5] Berginski M, Hüpkes J, Gordijn A, Reetz W, Wätjen T, Rech B and Wuttig M 2008 Sol. Energy Mater. Sol. Cells 92 1037
[6] Matsui T, Chang C W, Takada T, Isomura M, Fujiwara H and Kondo M 2008 Appl. Phys. Express 1 031501
[7] Matsui T, Chang C W, Takada T, Isomura M, Fujiwara H and Kondo M 2009 Sol. Energy Mater. Sol. Cells 93 1100
[8] Mackenzie K, Eggert J, Leopold D, Li Y, Lin S and Paul W 1985 Phys. Rev. B 31 2198
[9] Matsui T, Jia H and Kondo M 2010 Prog. Photovolt.:Res. Appl. 18 48
[10] Feldman D, Ashkin M and Parker J 1966 Phys. Rev. Lett. 17 1209
[11] Fritzsche H 1989 Amorphous silicon and related materials (Singapore:World Scientific)
[12] Bauer G, Nebel C, Schubert M and Schumm G 1989 "Band Tailing and Transport in a-SiGe:H-Alloys", MRS Proceedings (Cambridge:Cambridge University Press)
[13] Bidiville A, Matsui T and Kondo M 2014 J. Appl. Phys. 116 053701
[14] Kilper T, Beyer W, Bräuer G, Bronger T, Carius R, Van Den Donker M N, Hrunski D, Lambertz A, Merdzhanova T, Mück A, Rech B, Reetz W, Schmitz R, Zastrow U and Gordijn A 2009 J. Appl. Phys. 105 074509
[15] Woerdenweber J, Merdzhanova T, Stiebig H, Beyer W and Gordijn A 2010 Appl. Phys. Lett. 96 103505
[16] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[17] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[18] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[19] Duan Z G, Zhao Z Y and Yang P Z 2014 RSC Adv. 4 36485
[20] Zhao Z Y and Yang P Z 2014 Phys. Chem. Chem. Phys. 16 17499
[21] Pfrommer B G, Câté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[22] Van De Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!