ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Plasmon-phonon coupling in graphene-hyperbolic bilayer heterostructures |
Ge Yin(尹格), Jun Yuan(元军), Wei Jiang(姜玮), Jianfei Zhu(朱剑飞), Yungui Ma(马云贵) |
State Key Laboratory of Modern Optical Instrumentation, Center for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract Polar dielectrics are important optical materials enabling the subwavelength manipulation of light in infrared due to their capability to excite phonon polaritons. In practice, it is highly desired to actively modify these hyperbolic phonon polaritons (HPPs) to optimize or tune the response of the device. In this work, we investigate the plasmonic material, a monolayer graphene, and study its hybrid structure with three kinds of hyperbolic thin films grown on SiO2 substrate. The inter-mode hybridization and their tunability have been thoroughly clarified from both the band dispersions and the mode patterns numerically calculated through a transfer matrix method. Our results show that these hybrid multilayer structures are of strong potentials for applications in plasmonic waveguides, modulators and detectors in infrared.
|
Received: 08 April 2016
Revised: 03 June 2016
Accepted manuscript online:
|
PACS:
|
42.82.Fv
|
(Hybrid systems)
|
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61271085) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR15F050001). |
Corresponding Authors:
Yungui Ma
E-mail: yungui@zju.edu.cn
|
Cite this article:
Ge Yin(尹格), Jun Yuan(元军), Wei Jiang(姜玮), Jianfei Zhu(朱剑飞), Yungui Ma(马云贵) Plasmon-phonon coupling in graphene-hyperbolic bilayer heterostructures 2016 Chin. Phys. B 25 114216
|
[1] |
Poddubny A, Iorsh I, Belov P and Kivshar Y 2013 Nat. Photonics 7 948
|
[2] |
Jacob Z 2014 Nat. Mater. 13 1081
|
[3] |
Noginov M, Lapine M, Podolskiy V and Kivshar Y 2013 Opt. Express 21 14895
|
[4] |
Lu D and Liu Z 2012 Nat. Commun. 3 1205
|
[5] |
Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A and Zayats A V 2009 Nat. Mater. 8 867
|
[6] |
Poddubny A N, Belov P A, Ginzburg P, Zayats A V and Kivshar Y S 2012 Phys. Rev. B 86 035148
|
[7] |
High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D and Park H 2015 Naure 522 192
|
[8] |
Monticone F and Al'u A 2014 Chin. Phys. B 23 47809
|
[9] |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
|
[10] |
Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Nano Lett. 15 3172
|
[11] |
Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzaolez P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R and Koppens F H L 2015 Nat. Mater. 14 421
|
[12] |
Caldwell J D, Vurgaftman I, Tischler J G, Glembocki O J, Owrutsky J C and Reinecke T L 2016 Nat. Nanotechnol. 11 9
|
[13] |
Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T and Thiemens M 2015 Nat. Nanotechnol. 10 682
|
[14] |
Zhang K, Zhang H and Cheng X 2016 Chin. Phys. B 25 37104
|
[15] |
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
|
[16] |
Dai S, Fei Z, Ma Q, Rodin A S, Wagner M, McLeod A S, Liu M K, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Castro Neto A H, Zettl A, Keilmann F, Jarillo-Herrero P, Fogler M M and Basov D N 2014 Science 343 1125
|
[17] |
Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
|
[18] |
Lee S C, Ng S S, Al-Hardan N H, Abdullah M J, Hassan Z and Hassan H A 2011 Thin Solid Films 519 3703
|
[19] |
Carrasco E, Tamagnone M, Mosig J R, Low T and Perruisseau-Carrier J 2015 Nanotechnology 26 134002
|
[20] |
Wagner M, Fei Z, McLeod A S, Rodin A S, Bao W, Iwinski E G, Zhao Z, Goldflam M, Liu M, Dominguez G, Thiemens M, Fogler M M, Castro Neto A H, Lau C N, Amarie S, Keilmann F and Basov D N 2014 Nano Lett. 14 894
|
[21] |
Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys.-Condens. Mat. 25 215301
|
[22] |
Li Z Y and Lin L L 2003 Phys. Rev. E 4 046607
|
[23] |
Xiang Y, Guo J, Dai X, Wen S and Tang D 2014 Opt. Express 22 3054
|
[24] |
Zhang L, Zhang Z, Kang C, Cheng B, Chen L, Yang X, Wang J, Li W and Wang B 2014 Opt. Express 22 14022
|
[25] |
Cheng H, Chen S, Yu P, Liu W, Li Z, Li J, Xie B and Tian J 2015 Adv. Opt. Mater. 3 1744
|
[26] |
Messina R and Ben-Abdallah P 2013 Sci. Rep.-UK 3 1383
|
[27] |
Fei Z, Andreev G O, BaoW, Zhang L M, McLeod A S, Wang C, StewartMK, Zhao Z, Dominguez G, Thiemens M, FoglerMM, TauberMJ, Castro-Neto A H, Lau C N, Keilmann F and Basov D N 2011 Nano Lett. 11 4701
|
[28] |
Cai Y, Zhang L, Zeng Q, Cheng L and Xu Y 2007 Solid State Commun. 141 262
|
[29] |
Dai S, Ma Q, Andersen T, Mcleod A S, Fei Z, Liu M K, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler M M and Basov D N 2015 Nat. Commun. 6 6963
|
[30] |
Ng S S, Ooi P K, Lee S C, Hassan Z and Abu Hassan H 2012 Mater. Chem. Phys. 134 493
|
[31] |
Lee S C, Ng S S, Abu Hassan H, Hassan Z and Dumelow T 2014 Thin Solid Films 551 114
|
[32] |
Biehs S A, Ben-Abdallah P, Rosa F S, Joulain K and Greffet J J 2011 Opt. Express 19 A1088
|
[33] |
Yoxall E, Schnell M, Nikitin A Y, Txoperena O, Woessner A, Lundeberg M B, Casanova F, Hueso L E, Koppens F H L and Hillenbrand R 2015 Nat. Photonics 9 674
|
[34] |
Naik G V, Shalaev V M and Boltasseva A 2013 Adv. Mater. 25 3264
|
[35] |
Kao H L, Shih P J and Lai C H 1999 Jpn. J. Appl. Phys. 38 1526
|
[36] |
Dumelow T, Parker T J, Smith S R P and Tilley D R 1993 Surf. Sci. Rep. 17 151
|
[37] |
Dionne J A, Verhagen E, Polman A and Atwater H A 2008 Opt. Express 16 19001
|
[38] |
Guo Y, Newman W, Cortes C L and Jacob Z 2012 Adv. OptoElectron. 2012 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|