Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114216    DOI: 10.1088/1674-1056/25/11/114216
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Plasmon-phonon coupling in graphene-hyperbolic bilayer heterostructures

Ge Yin(尹格), Jun Yuan(元军), Wei Jiang(姜玮), Jianfei Zhu(朱剑飞), Yungui Ma(马云贵)
State Key Laboratory of Modern Optical Instrumentation, Center for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
Abstract  Polar dielectrics are important optical materials enabling the subwavelength manipulation of light in infrared due to their capability to excite phonon polaritons. In practice, it is highly desired to actively modify these hyperbolic phonon polaritons (HPPs) to optimize or tune the response of the device. In this work, we investigate the plasmonic material, a monolayer graphene, and study its hybrid structure with three kinds of hyperbolic thin films grown on SiO2 substrate. The inter-mode hybridization and their tunability have been thoroughly clarified from both the band dispersions and the mode patterns numerically calculated through a transfer matrix method. Our results show that these hybrid multilayer structures are of strong potentials for applications in plasmonic waveguides, modulators and detectors in infrared.
Keywords:  hyperbolic material      phonon polaritons      graphene      surface plasmons  
Received:  08 April 2016      Revised:  03 June 2016      Accepted manuscript online: 
PACS:  42.82.Fv (Hybrid systems)  
  42.70.Qs (Photonic bandgap materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61271085) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR15F050001).
Corresponding Authors:  Yungui Ma     E-mail:  yungui@zju.edu.cn

Cite this article: 

Ge Yin(尹格), Jun Yuan(元军), Wei Jiang(姜玮), Jianfei Zhu(朱剑飞), Yungui Ma(马云贵) Plasmon-phonon coupling in graphene-hyperbolic bilayer heterostructures 2016 Chin. Phys. B 25 114216

[1] Poddubny A, Iorsh I, Belov P and Kivshar Y 2013 Nat. Photonics 7 948
[2] Jacob Z 2014 Nat. Mater. 13 1081
[3] Noginov M, Lapine M, Podolskiy V and Kivshar Y 2013 Opt. Express 21 14895
[4] Lu D and Liu Z 2012 Nat. Commun. 3 1205
[5] Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A and Zayats A V 2009 Nat. Mater. 8 867
[6] Poddubny A N, Belov P A, Ginzburg P, Zayats A V and Kivshar Y S 2012 Phys. Rev. B 86 035148
[7] High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D and Park H 2015 Naure 522 192
[8] Monticone F and Al'u A 2014 Chin. Phys. B 23 47809
[9] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
[10] Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Nano Lett. 15 3172
[11] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzaolez P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R and Koppens F H L 2015 Nat. Mater. 14 421
[12] Caldwell J D, Vurgaftman I, Tischler J G, Glembocki O J, Owrutsky J C and Reinecke T L 2016 Nat. Nanotechnol. 11 9
[13] Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T and Thiemens M 2015 Nat. Nanotechnol. 10 682
[14] Zhang K, Zhang H and Cheng X 2016 Chin. Phys. B 25 37104
[15] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[16] Dai S, Fei Z, Ma Q, Rodin A S, Wagner M, McLeod A S, Liu M K, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Castro Neto A H, Zettl A, Keilmann F, Jarillo-Herrero P, Fogler M M and Basov D N 2014 Science 343 1125
[17] Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
[18] Lee S C, Ng S S, Al-Hardan N H, Abdullah M J, Hassan Z and Hassan H A 2011 Thin Solid Films 519 3703
[19] Carrasco E, Tamagnone M, Mosig J R, Low T and Perruisseau-Carrier J 2015 Nanotechnology 26 134002
[20] Wagner M, Fei Z, McLeod A S, Rodin A S, Bao W, Iwinski E G, Zhao Z, Goldflam M, Liu M, Dominguez G, Thiemens M, Fogler M M, Castro Neto A H, Lau C N, Amarie S, Keilmann F and Basov D N 2014 Nano Lett. 14 894
[21] Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys.-Condens. Mat. 25 215301
[22] Li Z Y and Lin L L 2003 Phys. Rev. E 4 046607
[23] Xiang Y, Guo J, Dai X, Wen S and Tang D 2014 Opt. Express 22 3054
[24] Zhang L, Zhang Z, Kang C, Cheng B, Chen L, Yang X, Wang J, Li W and Wang B 2014 Opt. Express 22 14022
[25] Cheng H, Chen S, Yu P, Liu W, Li Z, Li J, Xie B and Tian J 2015 Adv. Opt. Mater. 3 1744
[26] Messina R and Ben-Abdallah P 2013 Sci. Rep.-UK 3 1383
[27] Fei Z, Andreev G O, BaoW, Zhang L M, McLeod A S, Wang C, StewartMK, Zhao Z, Dominguez G, Thiemens M, FoglerMM, TauberMJ, Castro-Neto A H, Lau C N, Keilmann F and Basov D N 2011 Nano Lett. 11 4701
[28] Cai Y, Zhang L, Zeng Q, Cheng L and Xu Y 2007 Solid State Commun. 141 262
[29] Dai S, Ma Q, Andersen T, Mcleod A S, Fei Z, Liu M K, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler M M and Basov D N 2015 Nat. Commun. 6 6963
[30] Ng S S, Ooi P K, Lee S C, Hassan Z and Abu Hassan H 2012 Mater. Chem. Phys. 134 493
[31] Lee S C, Ng S S, Abu Hassan H, Hassan Z and Dumelow T 2014 Thin Solid Films 551 114
[32] Biehs S A, Ben-Abdallah P, Rosa F S, Joulain K and Greffet J J 2011 Opt. Express 19 A1088
[33] Yoxall E, Schnell M, Nikitin A Y, Txoperena O, Woessner A, Lundeberg M B, Casanova F, Hueso L E, Koppens F H L and Hillenbrand R 2015 Nat. Photonics 9 674
[34] Naik G V, Shalaev V M and Boltasseva A 2013 Adv. Mater. 25 3264
[35] Kao H L, Shih P J and Lai C H 1999 Jpn. J. Appl. Phys. 38 1526
[36] Dumelow T, Parker T J, Smith S R P and Tilley D R 1993 Surf. Sci. Rep. 17 151
[37] Dionne J A, Verhagen E, Polman A and Atwater H A 2008 Opt. Express 16 19001
[38] Guo Y, Newman W, Cortes C L and Jacob Z 2012 Adv. OptoElectron. 2012 1
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!