Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114215    DOI: 10.1088/1674-1056/25/11/114215
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system

Li Zou(邹丽)1,2, Le Wang(王乐)1, Sheng-Mei Zhao(赵生妹)1,3, Han-Wu Chen(陈汉武)4
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 School of Electronics and Information, Nantong University, Nantong 226000, China;
3 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
4 School of Computer Science and Engineering, College of Software Engineering, Southeast University, Nanjing 210096, China
Abstract  Atmospheric turbulence (AT) induced crosstalk can significantly impair the performance of a free-space optical (FSO) communication link using orbital angular momentum (OAM) multiplexing. In this paper, we propose a multiple-user detection (MUD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link. First, we present a MUD equivalent communication model for an OAM-multiplexed FSO communication link under AT. In the equivalent model, each input bit stream represents one user's information. The deformed OAM spatial modes caused by AT, instead of the pure OAM spatial modes, are used as information carriers, and the overlapping between the deformed OAM spatial modes are computed as the correlation coefficients between the users. Then, we present a turbulence mitigation scheme based on MUD idea to enhance AT tolerance of the OAM-multiplexed FSO communication link. In the proposed scheme, the crosstalk caused by AT is used as a useful component to deduce users' information. The numerical results show that the performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme. When the turbulence strength C3in2 is 1×10-15 m-2/3, the transmission distance is 1000 m and the channel signal-to-noise ratio (SNR) is 26 dB, the bit-error-rate (BER) performance of four spatial multiplexed OAM modes lm=+1,+2,+3,+4 are all close to 10-5, and there is a 2-3 fold increase in the BER performance in comparison with those results without the proposed scheme. In addition, the proposed scheme is more effective for an OAM-multiplexed FSO communication link with a larger OAM mode topological charge interval. The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link.
Keywords:  orbital angular momentum      atmospheric turbulence      free-space optical      multiple-user detection  
Received:  21 March 2016      Revised:  26 June 2016      Accepted manuscript online: 
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.68.Bz (Atmospheric turbulence effects)  
  42.25.Hz (Interference)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), the Postgraduate Innovation Research Plan of Jiangsu Province, China (Grant No. CXZZ13 0489), and the University Natural Science Foundation of Jiangsu Province, China (Grant No. 16KJB510037).
Corresponding Authors:  Sheng-Mei Zhao     E-mail:  zhaosm@njupt.edu.cn

Cite this article: 

Li Zou(邹丽), Le Wang(王乐), Sheng-Mei Zhao(赵生妹), Han-Wu Chen(陈汉武) Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system 2016 Chin. Phys. B 25 114215

[1] Allen L, Padgett M J and Babiker M 1999 Prog. Optics 39 291
[2] Franke-Arnold S, Allen L and Padgett M 2008 Laser Photon. Rev. 2 299
[3] Ding P F and Pu J X 2014 Opt. Exp. 22 1350
[4] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nature Photon. 6 488
[5] Fontaine N K, Doerr C R and Buhl L 2012 Proceedings of the Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, United States, p. OTu1I.2
[6] Yan Y, Yue Y, Huang H, Yang J Y, Chitgarha M R, Ahmed N, Tur M, Dolinar S J and Willner A E 2012 Opt. Lett. 37 3645
[7] Bozinovic N, Yue Y, Ren Y X, Tur M, Kristensen P, Huang H, Willner A E and Ramachandran S 2013 Science 340 1545
[8] Yue Y, Bozinovic N, Ren Y X, Huang H, Tur M, Kristensen P, Ramachandran S and Willner A E 2013 Proceedings of the Optical Fiber Communication Conference, March 17-21, 2013, Anaheim, United States, p. OTh4G.2
[9] Huang H, Xie G D, Yan Y, Ahmed N, Ren Y X, Yue Y, Rogawski D, Willner M J, Erkmen B I, Birnbaum K M, Dolinar S J, Lavery M P J, Padgett M J, Tur M and Willner A E 2014 Opt. Lett. 39 197
[10] Fang Y, Yu J J, Chi N, Zhang J W and Xiao J N 2015 IEEE Photon. J. 7 7900506
[11] Ramachandran S, Gregg P, Kristensen P and Golowich S E 2015 Opt. Exp. 23 3721
[12] Ren Y X, Wang Z, Liao P C, Li L, Xie G D, Huang H, Zhao Z, Yan Y, Ahmed N, Lavery M P J, Ashrai N, Ashrafi S, Linquist R D, Tur M, Djordjevic I B, Neifeld M A and Willner A E 2015 Proceedings of the Optical Fiber Communication Conference, March 22-26, 2015, Los Angeles, United States, p. M2F.1
[13] Li L, Xie G D, Ren Y X, Ahmed N, Huang H, Zhao Z, Liao P C, Lavery M P J, Yan Y, Bao C J, Wang Z, Ashrafi N, Ashrafi S, Tur M and Willner A E 2015 Proceedings of the Optical Fiber Communication Conference, March 22-26, 2015, Los Angeles, United States, p. M2F.6
[14] Wang L, Zhao S M, Gong L Y and Cheng W W 2015 Chin. Phys. B 24 120307
[15] Li Y Q, Wu Z S, Zhang Y Y and Wang M J 2014 Chin. Phys. B 23 074202
[16] Qian X M, Zhu W Y and Rao R Z 2015 Chin. Phys. B 24 044201
[17] Boufalah F, Dalil-Essakali L, Nebdi H and Belafhal A 2016 Chin. Phys. B 25 064208
[18] Pors B J, Monken C H, Eliel E R and Woerdman J P 2011 Opt. Exp. 19 6671
[19] Rodenburg B, Lavery M P J, Malik M, O'Sullivan M N, Mirhosseini M, Robertson D J, Padgett M and Boyd R W 2012 Opt. Lett. 37 3735
[20] Zhao S M, Yang H, Li Y Q, Cao F, Sheng Y B, Cheng W W and Gong L Y 2013 Opt. Commun. 294 223
[21] Chandrasekaran N and Shapiro J H 2014 IEEE J. Lightw. Technol. 32 1075
[22] Anguita J A, Neifeld M A and Vasic B V 2008 Appl. Opt. 47 2414
[23] Ren Y X, Huang H, Xie G D, Ahmed N, Yan Y, Erkmen B I, Chandrasekaran N, Lavery M P J, Steinhoff N K, Tur M, Dolinar S, Neifeld M, Padgett M J, Boyd R W, Shapiro J H and Willner A E 2013 Opt. Lett. 38 4062
[24] Ren Y X, Xie G D, Huang H, Bao C J, Yan Y, Ahmed N, Lavery M P J, Erkmen B I, Dolinar S, Tur M, Neifeld M A, Padgett M J, Boyd R W, Shapiro J H and Willner A E 2014 Opt. Lett. 39 2845
[25] Ren Y X, Xie G D, Huang H, Ahmed N, Yan Y, Li L, Bao C J, Lavery M P J, Tur M, Neifeld M A, Boyd R W, Shapiro J H and Willner A E 2014 Optica 1 376
[26] Xie G D, Ren Y X, Huang H, Lavery M P J, Ahmed N, Yan Y, Bao C J, Li L, Zhao Z, Cao Y W, Willner M, Tur M, Dolinar S J, Boyd R W, Shapiro J H and Willner A E 2015 Opt. Lett. 40 1197
[27] Djordjevic I B, Anguita J A and Vasic B 2012 IEEE J. Lightw. Technol. 30 2846
[28] Zhao S M, Wang L, Zou L, Gong L Y, Cheng W W, Zheng B Y and Chen H W 2016 Opt. Commun. 376 92
[29] Xu Z D, Gui C C, Li S H, Zhou J Y and Wang J 2014 Proceedings of the Advanced Photonics Communication Conference, July 13-17, 2014, San Diego, United States, p. JT3A.1
[30] Kohno R, Hatori M and Imai H 1983 Electr. Commun. JPN 66 20
[31] Verdú S 1998 Multiuser Detection (New York:Cambridge University Press) pp. 234-242
[32] Duel-Hallen A, Holtzman J and Zvonar Z 1995 IEEE Pers. Commun. 2 46
[33] Ping L 2005 IEEE Commun. Mag. 43 S19
[34] Schneider K S 1979 IEEE Trans Aerosp. Electron. Syst. AES-15 181
[35] Duel-Hallen A 1993 IEEE Trans. Commun. 41 285
[36] Poor H V and Verdú S 1997 IEEE Trans. Inf. Theory 43 858
[37] Honig M, Madhow U and Verdú S 1995 IEEE Trans. Inf. Theory 41 944
[38] Wang X D and Poor H V 1999 IEEE Trans. Commun. 47 1046
[39] Aazhang B, Paris B P and Orsak G C 1992 IEEE Trans. Commun. 40 1212
[40] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[41] Sueda K, Miyaji G, Miyanaga N and Nakatsuka M 2004 Opt. Exp. 12 3548
[42] Ding P F and Pu J X 2011 Acta Phys. Sin. 60 094204(in Chinese)
[43] Strasburg J D and Harper W W 2004 Proceedings of SPIE, Laser Systems Technology Ⅱ, April 12, 2004, Orlando, United States, p. 93
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[3] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[6] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[7] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[8] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[9] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[10] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[11] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[12] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[13] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[14] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[15] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
No Suggested Reading articles found!