Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118402    DOI: 10.1088/1674-1056/25/11/118402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An ultra-wideband pattern reconfigurable antenna based on graphene coating

YanNan Jiang(姜彦南)1,2,3, Rui Yuan(袁锐)1, Xi Gao(高喜)1,2, Jiao Wang(王娇)1,2,3, SiMin Li(李思敏)2, Yi-Yu Lin(林诒玉)1,2
1 Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin 541004, China;
2 Key Laboratory of Cognitive Radio and Information Processing(Ministry of Education), Guilin University of Electronic Technology, Guilin 541004, China;
3 Guangxi Experiment Center of Information Science, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  An ultra-wideband pattern reconfigurable antenna is proposed. The antenna is a dielectric coaxial hollow monopole with a cylindrical graphene-based impedance surface coating. It consists of a graphene sheet coated onto the inner surface of a cylindrical substrate and a set of independent polysilicon DC gating pads mounted on the outside of the cylindrical substrate. By changing the DC bias voltages to the different gating pads, the surface impedance of the graphene coating can be freely controlled. Due to the tunability of graphene's surface impedance, the radiation pattern of the proposed antenna can be reconfigured. A transmission line method is used to illustrate the physical mechanism of the proposed antenna. The results show that the proposed antenna can reconfigure its radiation pattern in the omnidirectional mode with the relative bandwidth of 58.5% and the directional mode over the entire azimuth plane with the relative bandwidth of 67%.
Keywords:  ultra-wideband pattern reconfigurable antenna      graphene      impedance surface  
Received:  20 April 2016      Revised:  19 July 2016      Accepted manuscript online: 
PACS:  84.40.Ba (Antennas: theory, components and accessories)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61661012, 61461016, and 61361005), the Natural Science Foundation of Guangxi, China (Grant Nos. 2015GXNSFBB139003 and 2014GXNSFAA118283), Program for Innovation Research Team of Guilin University of Electromagnetic Technology, China, and the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China.
Corresponding Authors:  Jiao Wang     E-mail:  wangjiao@guet.edu.cn

Cite this article: 

YanNan Jiang(姜彦南), Rui Yuan(袁锐), Xi Gao(高喜), Jiao Wang(王娇), SiMin Li(李思敏), Yi-Yu Lin(林诒玉) An ultra-wideband pattern reconfigurable antenna based on graphene coating 2016 Chin. Phys. B 25 118402

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[3] Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[4] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[5] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 45 7706
[6] Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270
[7] Murali R, Brenner K, Yang Y, Beck T and Meindl J D 2009 IEEE Electron Device Lett. 30 611
[8] Vakil A and Engheta N 2011 Science 332 1291
[9] Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749
[10] Chen P Y, Argyropoulos C and Alu A 2013 IEEE Transactions on Antennas and Propagation 61 1528
[11] He S and Chen T 2013 IEEE Transactions on Terahertz Science and Technology 3 757
[12] Xu B Z, Gu C Q, Li Z, Liu L L and Niu Z Y 2014 IEEE Antennas and Wireless Propagation Letters 13 822
[13] Jiang Y N, Wang Y, Ge D B, Li S M, Cao W P, Gao X and Yu X H 2016 Acta Phys. Sin. 65 054101 (in Chinese)
[14] Aldrigo M, Dragoman M, Costanzo A and Dragoman D 2014 J. Appl. Phys. 116 114302
[15] Wang X C, ZhaoW S, Hu J and Yin W Y 2015 IEEE Transactions on Nanotechnology 14 62
[16] Esquius-Morote M, Gomez-Diaz J S and Perruisseau-Carrier J 2014 IEEE Transactions on Terahertz Science and Technology 4 116
[17] Carrasco E and Perruisseau-Carrier J 2013 IEEE Antennas and Wireless Propagation Letters 12 253
[18] Chen X H, Yao Y, Qu S W, Wu Y S and Chen X D 2016 Electronics Letters 52 494
[19] Anand S T, Mayur S D and Sriram K D 2015 Physica E 66 67
[20] Rajni B and Anupma M 2016 Optik 127 2089
[21] Skulason H S, Nguyen H V, Guermoune A, Sridharan V, Siaj M, Caloz C and Szkopek T 2011 Appl. Phys. Lett. 99 153504
[22] Dragoman M, Neculoiu D, Cismaru A, Muller A A, Deligeorgis G, Konstantinidis G, Plana R and Dragoman D 2011 Appl. Phys. Lett. 99 033112
[23] Huang Y, Wu L S, Tang M and Mao J 2012 IEEE Transactions on Nanotechnology 11 836
[24] Tamagnone M, Gomez-Diaz J S, Mosig J and Perruisseau-Carrier J 2013 IEEE MTT-S International Microwave Symposium digest (IMS), June 2-7, 2013, Seattle, USA, p. 1
[25] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotechnol. 5 574
[26] Zaretski A V, Moetazedi H, Kong C, Sawyer E J, Savagatrup S, Valle E, O'Connor T F, Printz A D and Lipomi D J 2015 Nanotechnology 26 045301
[27] Hanson G W 2008 J. Appl. Phys. 103 064302
[28] Gusynin V P, Sharapov S G and Carbotte J P 2007 J. Phys.:Condens. Matter 19 026222
[29] Lu J H and Yeh C H 2012 IEEE Transactions on Antenna and Propagation 60 3091
[30] Tuovinen T and Berg M 2014 Progress in Electromagnetics Research 144 249
[31] Gao X, Han X, Cao W P, Li H O, Ma H F and Cui T J 2015 IEEE Transactions on Antenna and Propagation 63 3522
[32] Jiang Y N, Zhang W C, Wang J, Cao W P and Lin Y Y 2016 Eur. Phys. J. Appl. Phys. 73 11301
[33] Ziolkowski R W and Kipple A D 2003 IEEE Transactions on Antenna and Propagation 51 2626
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!