Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118403    DOI: 10.1088/1674-1056/25/11/118403
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons

Song Yue(岳松)1,2, Dong-ping Gao(高冬平)1, Zhao-chuan Zhang(张兆传)1, Wei-long Wang(王韦龙)1,2
1 Key Laboratory of High Power Microwave Sources and Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The frequency characteristics of free oscillation magnetron (FOM) and injection-locked magnetron (ILM) are theoretically investigated. By using the equal power voltage obtained from the experiment data, expressions of the frequency and radio frequency (RF) voltage of FOM and ILM, as well as the locking bandwidth, on the anode voltage and magnetic field are derived. With the increase of the anode voltage and the decrease of the magnetic field, the power and its growth rate increase, while the frequency increases and its growth rate decreases. The theoretical frequency and power of FOM agree with the particle-in-cell (PIC) simulation results. Besides, the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results, which verifies the accuracy of the theory. The theory provides a novel calculation method of frequency characteristics. It can approximately analyze the power and frequency of both FOM and ILM, which promotes the industrial applications of magnetron and microwave energy.
Keywords:  frequency      free oscillation magnetron      injection-locked magnetron      locking bandwidth  
Received:  24 May 2016      Revised:  10 July 2016      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  42.25.Kb (Coherence)  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB328901) and the National Natural Science Foundation of China (Grant No. 11305177).
Corresponding Authors:  Song Yue     E-mail:  yuessd@163.com

Cite this article: 

Song Yue(岳松), Dong-ping Gao(高冬平), Zhao-chuan Zhang(张兆传), Wei-long Wang(王韦龙) Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons 2016 Chin. Phys. B 25 118403

[1] Belanger J M, Jocelyn P J R, Poon O, Fairbridge C, Ng S, Mutyala S and Hawkins R 2008 J. Microwave Power E. E. 42 24
[2] Adler R 1946 Proc. IRE 34 351
[3] Pengvanich P, Neculaes V B, Lau Y Y, Gilgenbach R M, Jones M, White W M and Kowalczyk R D 2005 J. Appl. Phys. 98 114903
[4] Razavi B 2004 IEEE Journal of Solid-State Circuits 39 1415
[5] Zhu X Y, Jen L, Liu Q X and Du X S 1996 Rev. Sci. Instrum. 67 2010
[6] Treado T A, Brown P D, Hansen T A and Aiguier D J 1994 IEEE Trans. Plasma Sci. 22 616
[7] Sze H, Smith R R, Benford J N and Harteneck B D 1992 IEEE Trans. Electromagn. Compat. 34 235
[8] Benford J, Sze H, Woo W, Smith R R and Harteneck B 1989 Phys. Rev. Lett. 62 8
[9] Kazakevich G M, Pavlov V M, Jeong Y U and Lee B C 2011 Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment 647 10
[10] Gilmour A S 2011 Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-field Amplifiers, and Gyrotrons (New York:Artech House) p. 523
[11] Slater J C 1947 MIT. Cambridge, MA, RLE Tech. Rep. 3 1
[12] Slater J C 1946 Rev. Mod. Phys. 18 489
[13] Welch Jr H W 1953 Proc. IRE 41 1631
[14] David E E 1961 Crossed Field Microwave Devices (Vol. 2) (New York:Academic Press) p. 375
[15] David E E 1952 Proc. IRE 40 669
[16] Woo W, Benford J, Fittinghoff D, Harteneck B, Price D, Smith R and Sze H 1989 J. Appl. Phys. 65 861
[17] Chen S C 1990 IEEE Trans. Plasma Sci. 18 570
[18] Tahir I, Dexter A and Carter R 2005 IEEE Trans. Electron Devices 52 2096
[19] Tahir I, Dexter A and Carter R 2006 IEEE Trans. Electron Devices 53 1721
[20] Zhou J, Liu D, Liao C and Li Z 2009 IEEE Trans. Plasma Sci. 37 2002
[21] Zhang Z T 1981 Principles of Microwave Tubes (Beijing:National Defence Industry Press) p. 112(in Chinese)
[1] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[2] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[3] Transition frequencies between 2S and 2P states of lithium-like ions
Liming Wang(王黎明), Tongtong Liu(刘仝彤), Weiqing Yang(杨为青), and Zong-Chao Yan. Chin. Phys. B, 2023, 32(3): 033102.
[4] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[5] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[6] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[7] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[8] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[9] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[10] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[11] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[12] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[13] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[14] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[15] A novel demodulation method for transmission using nitrogen-vacancy-based solid-state quantum sensor
Ruixin Bai(白瑞昕), Xinyue Zhu(朱欣岳), Fan Yang(杨帆), Tianran Gao(高天然), Ziran Wang(汪子然), Linyan Yu(虞林嫣), Jinfeng Wang(汪晋锋), Li Zhou(周力), and Guanxiang Du(杜关祥). Chin. Phys. B, 2022, 31(7): 074203.
No Suggested Reading articles found!