Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 063101    DOI: 10.1088/1674-1056/25/6/063101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Correlation between valence electronic structure and magnetic properties in RCo5 (R= rare earth) intermetallic compound

Zhi-Qin Xue(薛智琴), Yong-Quan Guo(郭永权)
North China Electric Power University, School of Energy Power and Mechanical Engineering, Beijing 102206, China
Abstract  

The magnetisms of RCo5 (R=rare earth) intermetallics are systematically studied with the empirical electron theory of solids and molecules (EET). The theoretical moments and Curie temperatures agree well with experimental ones. The calculated results show strong correlations between the valence electronic structure and the magnetic properties in RCo5 intermetallic compounds. The moments of RCo5 intermetallics originate mainly from the 3d electrons of Co atoms and 4f electrons of rare earth, and the s electrons also affect the magnetic moments by the hybridization of d and s electrons. It is found that moment of Co atom at 2c site is higher than that at 3g site due to the fact that the bonding effect between R and Co is associated with an electron transformation from 3d electrons into covalence electrons. In the heavy rare-earth-based RCo5 intermetallics, the contribution to magnetic moment originates from the 3d and 4f electrons. The covalence electrons and lattice electrons also affect the Curie temperature, which is proportional to the average moment along the various bonds.

Keywords:  EET theory      electronic structure      Curie temperature      RCo5 intermetallics  
Received:  26 October 2015      Revised:  03 March 2016      Accepted manuscript online: 
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  31.30.-i (Corrections to electronic structure)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11274110).

Corresponding Authors:  Yong-Quan Guo     E-mail:  yqguo@ncepu.edu.cn

Cite this article: 

Zhi-Qin Xue(薛智琴), Yong-Quan Guo(郭永权) Correlation between valence electronic structure and magnetic properties in RCo5 (R= rare earth) intermetallic compound 2016 Chin. Phys. B 25 063101

[1] Larson P, Mazin I I and Papaconstantopoulos D A 2003 Phys. Rev. B 67 214405
[2] Malik S K, Arlinghaus F J and Wallace W E 1977 Phys. Rev. B 16 1242
[3] Li Z B, Lan J T, Zhang X F, Liu Y L and Li Y F 2015 Chin. Phys. B 24 087501
[4] Herbst J F and Hector L G 2007 J. Alloys Compd. 188 446
[5] Han X F, Yang F M, Zeng Z, Zheng Q Q, Wang X F, Jin H M and Sun J Z 1997 Acta Phys. Sin. (Overseas Edition, i.e., Chin. Phys.) 6 697
[6] Sankar S G, Rao V U S, Segal E, Wallace W E, Frederick W G D and Garrett H J 1975 Phys. Rev. B 11 435
[7] Rao V U S and Greedan J E 1973 J. Solid State Chem. 6 387
[8] Chen T L and Wang Q 2000 Commun. Theor. Phys. 34 6
[9] Zhao T S, Jin H M, Guo G H, Han X F and Chen H 1991 Phys. Rev. B 43 8593
[10] Tadaei I and Hideaki I 2005 J. Appl. Phys. 97 10A313
[11] Hector L G and Herbst J F 2003 Appl. Phys. Lett. 82 1042
[12] Liebs M, Hummler K, Beuerle T, Ubele P and Fahnle M 1995 J. Magn. Magn. Mater. 140-144 851
[13] Miletić G I and Blažina Ž 2007 J. Solid State Chem. 180 604
[14] Miletić G I and Blažina Ž 2009 J. Magn. Magn. Mater. 321 3888
[15] Richter M, Oppeneer P M, Eschrig H and Johansson B 1992 Phys. Rev. B 46 13919
[16] Beloritzky E, Fremy M A, Gavigan J P, Givord D and Li H S 1987 J. Appl. Phys. 61 3971
[17] Hu B P, Li H S, Gavigan J P and Coey J M D 1990 Phys. Rev. B 41 2221
[18] Kokorina E E, Medvedev M V and Nekrasov I A 2010 International Conference on Magnetic Materials, October 25-29, 2010, Kolkata, India, p. 75
[19] Yu R H 1978 Chin. Sci. Bull. 23 217 (in Chinese)
[20] Cao Z X 2014 Chin. Phys. B 23 063102
[21] Zhang J F, Zhang M, Zhao Y W, Zhang H Y, Zhao L N and Luo Y H 2015 Chin. Phys. B 24 067101
[22] Fang S S and Qiao H X 2015 Chin. Phys. B 24 083101
[23] Guo Y Q, Yu R H, Zhang R L, Zhang X H and Tao K 1998 J. Phys. Chem. B 102 9
[24] Wu W X, Guo Y Q, Li A H and Li W 2008 Acta Phys. Sin. 57 2486 (in Chinese)
[25] Meng Z H, Guo Y Q, Li J B and Wang Y 2012 Acta Phys. Sin. 61 107101 (in Chinese)
[26] Lin C, Yin G L and Zhao Y Q 2015 Comp. Mater. Sci. 101 168
[27] Shen J, Qian P and Chen N X 2004 J. Phys. Chem. Solids 65 1307
[28] Givord D, Deportes J, Schweizer J and Tasset F 1976 IEEE. Trans. Magn. 12 1000
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice
Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127203.
[11] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[12] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[13] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[14] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[15] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
No Suggested Reading articles found!