Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097102    DOI: 10.1088/1674-1056/ac0cdb
Special Issue: SPECIAL TOPIC — Two-dimensional magnetic materials and devices
SPECIAL TOPIC—Two-dimensional magnetic materials and devices Prev   Next  

Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12

Zhen Feng(冯振)1,2, Yi Li(李依)1, Yaqiang Ma(马亚强)1, Yipeng An(安义鹏)1,†, and Xianqi Dai(戴宪起)1,‡
1 School of Physics, Henan Normal University, Xinxiang 453007, China;
2 School of Materials Science and Engineering, Henan Institute of Technology, Xinxiang 453000, China
Abstract  The ferromagnetism of two-dimensional (2D) materials has aroused great interest in recent years, which may play an important role in the next-generation magnetic devices. Herein, a series of 2D transition metal-organic framework materials (TM-NH MOF, TM=Sc-Zn) are designed, and their electronic and magnetic characters are systematically studied by means of first-principles calculations. Their structural stabilities are examined through binding energies and ab-initio molecular dynamics simulations. Their optimized lattice constants are correlated to the central TM atoms. These 2D TM-NH MOF nanosheets exhibit various electronic and magnetic performances owing to the effective charge transfer and interaction between TM atoms and graphene linkers. Interestingly, Ni- and Zn-NH MOFs are nonmagnetic semiconductors (SM) with band gaps of 0.41 eV and 0.61 eV, respectively. Co- and Cu-NH MOFs are bipolar magnetic semiconductors (BMS), while Fe-NH MOF monolayer is a half-semiconductor (HSM). Furthermore, the elastic strain could tune their magnetic behaviors and transformation, which ascribes to the charge redistribution of TM-3d states. This work predicts several new 2D magnetic MOF materials, which are promising for applications in spintronics and nanoelectronics.
Keywords:  two-dimensional metal-organic frameworks      electronic structure      magnetic property      strain engineering  
Received:  20 April 2021      Revised:  07 June 2021      Accepted manuscript online:  21 June 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.40.Vz (Semiconductor-metal-semiconductor structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074053, 61901161, 21906041, and 11774079), the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410226, 202300410237, and 202300410100), Henan Overseas Expertise Introduction Center for Discipline Innovation (Grant No. CXJD2019005), and key scientific research projects of Colleges and universities in Henan Province, China (Grant Nos. 21A480004, 152102210306, 192102310499, and 19B450001).
Corresponding Authors:  Yipeng An, Xianqi Dai     E-mail:  ypan@htu.edu.cn;xqdai@htu.edu.cn

Cite this article: 

Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起) Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12 2021 Chin. Phys. B 30 097102

[1] Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z and Zhao Y 2020 Theranostics 10 757
[2] Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225
[3] Wang Y, Wang L, Zhang X, Liang X, Feng Y and Feng W 2021 Nano Today 37 101059
[4] Yang C, Wang H and Xu Q 2020 Chem. Res. Chin. U. 36 10
[5] Li D, Gong Y, Chen Y, Lin J, Khan Q, Zhang Y, Li Y, Zhang H and Xie H 2020 Nano. Micro. Lett. 12 36
[6] Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y and Qiao S 2018 Chem. Rev. 118 6337
[7] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T and Ruoff R S 2006 Nature 442 282
[8] Zhou M, Lu Y, Cai Y, Zhang C and Feng Y 2011 Nanotechnology 22 385502
[9] He J, Ma S Y, Zhou P, Zhang C X, He C and Sun L Z 2012 J. Phys. Chem. C 116 26313
[10] Du J, Xia C, An Y, Wang T and Jia Y 2016 J. Mater. Sci. 51 9504
[11] Roy D, Hossain M K, Hasan S M, Milon, Hossain M A and Ahmed F 2021 Physica E 125 114359
[12] Li S, Zhou M, Li M, Lu G, Wang X, Zheng F and Zhang P 2018 J. Appl. Phys. 123 95110
[13] Yu W, Zhu Z, Niu C, Li C, Cho J and Jia Y 2016 Nnanscale Res. Lett. 11 77
[14] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[15] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[16] An Y, Wang K, Gong S, Hou Y, Ma C, Zhu M, Zhao C, Wang T, Ma S, Wang H, Wu R and Liu W 2021 npj Comput. Mater. 7 45
[17] Deng Y, Yu Y, Song Y, Zhang J, Wang N, Sun Z, Yi Y, Wu Y, Wu S, Zhu J, Wang J, Chen X and Zhang Y 2018 Nature 563 94
[18] Lin H, Yan F, Hu C, Lv Q, Zhu W, Wang Z, Wei Z, Chang K and Wang K 2020 ACS Appl. Mater. Interfaces 12 43921
[19] Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K and Wang K 2020 Sci. Bull. 65 1072
[20] Tang X and Kou L 2019 J. Phys. Chem. Lett. 10 6634
[21] Zhu G and Sun Q 2016 Comp. Mater. Sci. 112 492
[22] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y, Wu S, Zhu J, Wang J, Chen X and Zhang Y 2018 Nature 563 94
[23] Li X and Yang J 2016 Natil. Sci. Rev. 3 365
[24] Song X, Liu J, Zhang T and Chen L 2020 Sci. China Chem. 63 1391
[25] Li C, Zhang L, Chen J, Li X, Sun J, Zhu J, Wang X and Fu Y 2021 Nanoscale 13 485
[26] Yu M, Dong R and Feng X 2020 J. Am. Chem. Soc. 142 12903
[27] Zhao W, Chen T, Wang W, Jin B, Peng J, Bi S, Jiang M, Liu S, Zhao Q and Huang W 2020 Sci. Bull. 65 1803
[28] Cai D, Lu M, Li L, Cao J, Chen D, Tu H, Li J and Han W 2019 Small 15 1902605
[29] Song X, Wang X, Li Y, Zheng C, Zhang B, Di C A, Li F, Jin C, Mi W, Chen L and Hu W 2020 Angew. Chem. Int. Edit. 59 1118
[30] Jiang Q, Xiong P, Liu J, Xie Z, Wang Q, Yang X Q, Hu E, Cao Y, Sun J, Xu Y and Chen L 2020 Angew. Chem. Int. Edit. 59 5273
[31] Wu Z, Adekoya D, Huang X, Kiefel MJ, Xie J, Xu W, Zhang Q, Zhu D and Zhang S 2020 ACS Nano 14 12016
[32] Mortazavi B, Shahrokhi M, Makaremi M, Cuniberti G and Rabczuk T 2018 Mater. Today Energy 10 336
[33] Chakravarty C, Mandal B and Sarkar P 2016 J. Phys. Chem. C 120 28307
[34] Chakravarty C, Mandal B and Sarkar P 2019 J. Phys. Chem. C 124 37
[35] Zhao M, Wang A and Zhang X 2013 Nanoscale 5 144
[36] Liu J and Sun Q 2015 ChemPhysChem 16 614
[37] Dong R, Zhang Z, Tranca D C, Zhou S, Wang M, Adler P, Liao Z, Liu F, Sun Y, Shi W, Zhang Z, Zschech E, Mannsfeld S C B, Felser C and Feng X 2018 Nat. Commun. 9 2637
[38] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[40] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 77 3865
[41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[42] Chanier T, Sargolzaei M, Opahle I, Hayn R and Koepernik K 2006 Phys. Rev. B 73 134418
[43] Wehling T O, Lichtenstein A I and Katsnelson M I 2011 Phys. Rev. B 84 235110
[44] Wang V, Xu N, Liu J C, Tang G and Geng W 2021 Comput. Phys. Commun. 108033
[45] Martyna G J, Klein M L and Mark T 1992 J. Chem. Phys. 97 2635
[46] Wang P, Jiang X, Hu J, Wang B, Zhou T, Yuan H and Zhao J 2020 Phys. Chem. Chem. Phys. 22 11045
[47] Zhang J, Zhou Z, Wang F, Li Y and Jing Y 2020 ACS Sustain. Chem. Eng. 8 7472
[48] Baidya S, Kang S, Kim C H and Yu J 2019 Sci. Rep. 9 13807
[49] Tian Y, Zhu C, Yan L, Zhao J and Su Z 2019 J. Mater. Chem. A 7 15341
[50] Cui Q, Qin G, Wang W, Geethalakshmi K R, Du A and Sun Q 2020 Appl. Surf. Sci. 500 143993
[51] Henkelman G, Arnaldsson A and Jónsson H 2006 Comp. Mater. Sci. 36 354
[52] Sun M, Ren Q, Wang S, Zhang Y, Du Y, Yu J and Tang W 2016 Comp. Mater. Sci. 118 112
[53] Song N H, Wang Y S, Zhang LY, Yang Y Y and Jia Y 2018 J. Magn. Magn. Mater. 468 252
[54] Xu Z, Hou Q, Guo F, Jia X, Li C and Li W 2018 Curr. Appl. Phys. 18 1465
[55] Wu N, Zhao X and Wang T 2016 Physica E 84 505
[56] Liu J, Ma Y, Zhao M, Yi L, Dai X and Tang Y 2018 J. Mater. Sci. 53 5114
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[8] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[9] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[10] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[11] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[12] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[13] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[14] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[15] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
No Suggested Reading articles found!