Special Issue:
SPECIAL TOPIC — Two-dimensional magnetic materials and devices
|
SPECIAL TOPIC—Two-dimensional magnetic materials and devices |
Prev
Next
|
|
|
Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12 |
Zhen Feng(冯振)1,2, Yi Li(李依)1, Yaqiang Ma(马亚强)1, Yipeng An(安义鹏)1,†, and Xianqi Dai(戴宪起)1,‡ |
1 School of Physics, Henan Normal University, Xinxiang 453007, China; 2 School of Materials Science and Engineering, Henan Institute of Technology, Xinxiang 453000, China |
|
|
Abstract The ferromagnetism of two-dimensional (2D) materials has aroused great interest in recent years, which may play an important role in the next-generation magnetic devices. Herein, a series of 2D transition metal-organic framework materials (TM-NH MOF, TM=Sc-Zn) are designed, and their electronic and magnetic characters are systematically studied by means of first-principles calculations. Their structural stabilities are examined through binding energies and ab-initio molecular dynamics simulations. Their optimized lattice constants are correlated to the central TM atoms. These 2D TM-NH MOF nanosheets exhibit various electronic and magnetic performances owing to the effective charge transfer and interaction between TM atoms and graphene linkers. Interestingly, Ni- and Zn-NH MOFs are nonmagnetic semiconductors (SM) with band gaps of 0.41 eV and 0.61 eV, respectively. Co- and Cu-NH MOFs are bipolar magnetic semiconductors (BMS), while Fe-NH MOF monolayer is a half-semiconductor (HSM). Furthermore, the elastic strain could tune their magnetic behaviors and transformation, which ascribes to the charge redistribution of TM-3d states. This work predicts several new 2D magnetic MOF materials, which are promising for applications in spintronics and nanoelectronics.
|
Received: 20 April 2021
Revised: 07 June 2021
Accepted manuscript online: 21 June 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.40.Vz
|
(Semiconductor-metal-semiconductor structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074053, 61901161, 21906041, and 11774079), the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410226, 202300410237, and 202300410100), Henan Overseas Expertise Introduction Center for Discipline Innovation (Grant No. CXJD2019005), and key scientific research projects of Colleges and universities in Henan Province, China (Grant Nos. 21A480004, 152102210306, 192102310499, and 19B450001). |
Corresponding Authors:
Yipeng An, Xianqi Dai
E-mail: ypan@htu.edu.cn;xqdai@htu.edu.cn
|
Cite this article:
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起) Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12 2021 Chin. Phys. B 30 097102
|
[1] Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z and Zhao Y 2020 Theranostics 10 757 [2] Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225 [3] Wang Y, Wang L, Zhang X, Liang X, Feng Y and Feng W 2021 Nano Today 37 101059 [4] Yang C, Wang H and Xu Q 2020 Chem. Res. Chin. U. 36 10 [5] Li D, Gong Y, Chen Y, Lin J, Khan Q, Zhang Y, Li Y, Zhang H and Xie H 2020 Nano. Micro. Lett. 12 36 [6] Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y and Qiao S 2018 Chem. Rev. 118 6337 [7] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T and Ruoff R S 2006 Nature 442 282 [8] Zhou M, Lu Y, Cai Y, Zhang C and Feng Y 2011 Nanotechnology 22 385502 [9] He J, Ma S Y, Zhou P, Zhang C X, He C and Sun L Z 2012 J. Phys. Chem. C 116 26313 [10] Du J, Xia C, An Y, Wang T and Jia Y 2016 J. Mater. Sci. 51 9504 [11] Roy D, Hossain M K, Hasan S M, Milon, Hossain M A and Ahmed F 2021 Physica E 125 114359 [12] Li S, Zhou M, Li M, Lu G, Wang X, Zheng F and Zhang P 2018 J. Appl. Phys. 123 95110 [13] Yu W, Zhu Z, Niu C, Li C, Cho J and Jia Y 2016 Nnanscale Res. Lett. 11 77 [14] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [15] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [16] An Y, Wang K, Gong S, Hou Y, Ma C, Zhu M, Zhao C, Wang T, Ma S, Wang H, Wu R and Liu W 2021 npj Comput. Mater. 7 45 [17] Deng Y, Yu Y, Song Y, Zhang J, Wang N, Sun Z, Yi Y, Wu Y, Wu S, Zhu J, Wang J, Chen X and Zhang Y 2018 Nature 563 94 [18] Lin H, Yan F, Hu C, Lv Q, Zhu W, Wang Z, Wei Z, Chang K and Wang K 2020 ACS Appl. Mater. Interfaces 12 43921 [19] Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K and Wang K 2020 Sci. Bull. 65 1072 [20] Tang X and Kou L 2019 J. Phys. Chem. Lett. 10 6634 [21] Zhu G and Sun Q 2016 Comp. Mater. Sci. 112 492 [22] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y, Wu S, Zhu J, Wang J, Chen X and Zhang Y 2018 Nature 563 94 [23] Li X and Yang J 2016 Natil. Sci. Rev. 3 365 [24] Song X, Liu J, Zhang T and Chen L 2020 Sci. China Chem. 63 1391 [25] Li C, Zhang L, Chen J, Li X, Sun J, Zhu J, Wang X and Fu Y 2021 Nanoscale 13 485 [26] Yu M, Dong R and Feng X 2020 J. Am. Chem. Soc. 142 12903 [27] Zhao W, Chen T, Wang W, Jin B, Peng J, Bi S, Jiang M, Liu S, Zhao Q and Huang W 2020 Sci. Bull. 65 1803 [28] Cai D, Lu M, Li L, Cao J, Chen D, Tu H, Li J and Han W 2019 Small 15 1902605 [29] Song X, Wang X, Li Y, Zheng C, Zhang B, Di C A, Li F, Jin C, Mi W, Chen L and Hu W 2020 Angew. Chem. Int. Edit. 59 1118 [30] Jiang Q, Xiong P, Liu J, Xie Z, Wang Q, Yang X Q, Hu E, Cao Y, Sun J, Xu Y and Chen L 2020 Angew. Chem. Int. Edit. 59 5273 [31] Wu Z, Adekoya D, Huang X, Kiefel MJ, Xie J, Xu W, Zhang Q, Zhu D and Zhang S 2020 ACS Nano 14 12016 [32] Mortazavi B, Shahrokhi M, Makaremi M, Cuniberti G and Rabczuk T 2018 Mater. Today Energy 10 336 [33] Chakravarty C, Mandal B and Sarkar P 2016 J. Phys. Chem. C 120 28307 [34] Chakravarty C, Mandal B and Sarkar P 2019 J. Phys. Chem. C 124 37 [35] Zhao M, Wang A and Zhang X 2013 Nanoscale 5 144 [36] Liu J and Sun Q 2015 ChemPhysChem 16 614 [37] Dong R, Zhang Z, Tranca D C, Zhou S, Wang M, Adler P, Liao Z, Liu F, Sun Y, Shi W, Zhang Z, Zschech E, Mannsfeld S C B, Felser C and Feng X 2018 Nat. Commun. 9 2637 [38] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [40] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 77 3865 [41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [42] Chanier T, Sargolzaei M, Opahle I, Hayn R and Koepernik K 2006 Phys. Rev. B 73 134418 [43] Wehling T O, Lichtenstein A I and Katsnelson M I 2011 Phys. Rev. B 84 235110 [44] Wang V, Xu N, Liu J C, Tang G and Geng W 2021 Comput. Phys. Commun. 108033 [45] Martyna G J, Klein M L and Mark T 1992 J. Chem. Phys. 97 2635 [46] Wang P, Jiang X, Hu J, Wang B, Zhou T, Yuan H and Zhao J 2020 Phys. Chem. Chem. Phys. 22 11045 [47] Zhang J, Zhou Z, Wang F, Li Y and Jing Y 2020 ACS Sustain. Chem. Eng. 8 7472 [48] Baidya S, Kang S, Kim C H and Yu J 2019 Sci. Rep. 9 13807 [49] Tian Y, Zhu C, Yan L, Zhao J and Su Z 2019 J. Mater. Chem. A 7 15341 [50] Cui Q, Qin G, Wang W, Geethalakshmi K R, Du A and Sun Q 2020 Appl. Surf. Sci. 500 143993 [51] Henkelman G, Arnaldsson A and Jónsson H 2006 Comp. Mater. Sci. 36 354 [52] Sun M, Ren Q, Wang S, Zhang Y, Du Y, Yu J and Tang W 2016 Comp. Mater. Sci. 118 112 [53] Song N H, Wang Y S, Zhang LY, Yang Y Y and Jia Y 2018 J. Magn. Magn. Mater. 468 252 [54] Xu Z, Hou Q, Guo F, Jia X, Li C and Li W 2018 Curr. Appl. Phys. 18 1465 [55] Wu N, Zhao X and Wang T 2016 Physica E 84 505 [56] Liu J, Ma Y, Zhao M, Yi L, Dai X and Tang Y 2018 J. Mater. Sci. 53 5114 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|