CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice |
Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟)†,Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文)‡ |
School of Physics and Technology, University of Jinan, Jinan 250022, China |
|
|
Abstract The search for two-dimensional (2D) nodal ring semimetallic materials is a current research hotspot in spintronics, and designing a 2D nodal ring (NR) material with high Curie temperature ($T_{\mathrm{C}})$ and strong robustness to spin-orbit coupling (SOC) is an even greater challenge. Here, based on the first-principles calculations and symmetry analysis, we predict that 2D Mn$_{2}$N$_{3}$ is a nodal ring semimetal (NRSM) with three energy bands near the Fermi energy level consisting of electrons in the same spin channel. An electron-like energy band and two hole-like energy bands near the Fermi plane cross to form two NRs centered at the point $\varGamma $. Symmetry analysis shows that the spin-polarized NR semimetal is robust to SOC due to the conservation of horizontal mirror symmetry. Monte-Carlo simulations further demonstrate that the $T_{\mathrm{C}}$ of the 2D Mn$_{2}$N$_{3}$ reaches 530 K, well above the room temperature. Notably, the 2D Mn$_{2}$N$_{3}$ remains an NRSM on h-BN substrate. Our results not only reveal a general framework for designing 2D NR materials, but also promote further research in the direction of multifunctional quantum devices for spintronics.
|
Received: 15 July 2022
Revised: 09 September 2022
Accepted manuscript online: 15 September 2022
|
PACS:
|
72.25.-b
|
(Spin polarized transport)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
31.15.aj
|
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
|
|
Fund: Project supported by Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043), and National Natural Science Foundation of China (Grant Nos. 52173283 and 62071200). |
Corresponding Authors:
Miao-Juan Ren, Chang-Wen Zhang
E-mail: ss_renmj@ujn.edu.cn;ss_zhangchw@ujn.edu.cn
|
Cite this article:
Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文) High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice 2022 Chin. Phys. B 31 127203
|
[1] Burkov A 2016 Nat. Mater. 15 1145 [2] Velury S and Hughes T L 2022 Phys. Rev. B 105 184105 [3] Weng H, Dai X and Fang Z 2016 J. Phys.: Condens. Matter 28 303001 [4] Feng X, Zhu J, Wu W and Yang S A 2021 Chin. Phys. B 30 107304 [5] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [6] Chen Y, Xie Y, Yang S A, Pan H, Zhang F, Cohen M L and Zhang S 2015 Nano Lett. 15 6974 [7] Steinberg J A, Young S M, Zaheer S, Kane C L, Mele E J and Rappe A M 2014 Phys. Rev. Lett. 112 036403 [8] Liu Z, Zhou B, Zhang Y, Wang Z, Weng H M, Prabhakaran D, Mo S K, Shen Z, Fang Z and Dai X 2014 Science 343 864 [9] Wieder B J, Kim Y, Rappe A and Kane C 2016 Phys. Rev. Lett. 116 186402 [10] Watanabe H, Po H C, Zaletel M P and Vishwanath A 2016 Phys. Rev. Lett. 117 096404 [11] Li S, Liu Y, Wang S S, Yu Z M, Guan S, Sheng X L, Yao Y and Yang S A 2018 Phys. Rev. B 97 045131 [12] Feng B, Fu B, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S, Mahatha S K and Sheverdyaeva P 2017 Nat. Commun. 8 1 [13] Chen C, Zeng X T, Chen Z, Zhao Y, Sheng X L and Yang S A 2022 Phys. Rev. Lett. 128 026405 [14] Du X L, Chen R, Wang R and Xu D H 2022 Phys. Rev. B 105 L081102 [15] Jin L, Zhang X, Liu Y, Dai X and Liu G 2022 Phys. Rev. B 105 075414 [16] Li X Y, Zhang M H, Ren M J and Zhang C W 2020 Phys. Chem. Chem. Phys. 22 27024 [17] Pang Z X, Zhao Y C, Ji W X, Wang Y and Li P 2021 Phys. Chem. Chem. Phys. 23 12280 [18] Li K K and Hu J P 2017 Chin. Phys. Lett. 34 077501 [19] Fang C, Weng H, Dai X and Fang Z 2016 Chin. Phys. B 25 117106 [20] Chen S, Lou Z, Zhou Y, Chen Q, Xu B, Wu C, Du J, Yang J, Wang H and Fang M 2021 Chin. Phys. Lett. 38 017202 [21] Li J, Zhao L X, Wang Y Y, Wang X M, Ma C Y, Zhu W L, Gao M R, Zhang S, Ren Z A and Chen G F 2019 Chin. Phys. B 28 046202 [22] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108 [23] Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807 [24] Zhao X, Guo P J, Ma F and Lu Z Y 2021 Phys. Rev. B 103 085138 [25] Takahashi R, Hirayama M and Murakami S 2017 Phys. Rev. B 96 155206 [26] Rhim J W and Kim Y B 2015 Phys. Rev. B 92 045126 [27] Kopnin N, Heikkilä T and Volovik G 2011 Phys. Rev. B 83 220503 [28] Huh Y, Moon E G and Kim Y B 2016 Phys. Rev. B 93 035138 [29] Yan B and Felser C 2016 arXiv: 1611.04182 [30] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 [31] Ventra M D, Pantelides S and Lang N 2000 Phys. Rev. Lett. 84 979 [32] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 [33] Leenheer J, Van Heerde H J, Bijmolt T H and Smidts A 2007 Int. J. Res. Mark. 24 31 [34] Wu J, Liu J and Liu X J 2014 Phys. Rev. Lett. 113 136403 [35] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433 [36] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A and Niu Q 2014 Phys. Rev. Lett. 112 116404 [37] Wang Y P, Li S S, Zhang C W, Zhang S F, Ji W X, Li P and Wang P J 2018 J. Mater. Chem. C 6 10284 [38] Zhang L, Zhang C W, Zhang S F, Ji W X, Li P and Wang P J 2019 Nanoscale 11 5666 [39] Zhang L, Zhang S F, Ji W X, Zhang C W, Li P, Wang P J, Li S S and Yan S S 2018 Nanoscale 10 20748 [40] Hafner J 2008 J. Comput. Chem. 29 2044 [41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [42] Blöchl P E 1994 Phys. Rev. B 50 17953 [43] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [44] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [45] Togo A and Tanaka I 2015 Scripta Mater. 108 1 [46] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [47] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [48] Wang X, Yates J R, Souza I and Vanderbilt D 2006 Phys. Rev. B 74 195118 [49] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A and Cobden D H 2017 Nature 546 270 [50] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C and Wang Y 2017 Nature 546 265 [51] Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|