Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 127203    DOI: 10.1088/1674-1056/ac921c

High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice

Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文)
School of Physics and Technology, University of Jinan, Jinan 250022, China
Abstract  The search for two-dimensional (2D) nodal ring semimetallic materials is a current research hotspot in spintronics, and designing a 2D nodal ring (NR) material with high Curie temperature ($T_{\mathrm{C}})$ and strong robustness to spin-orbit coupling (SOC) is an even greater challenge. Here, based on the first-principles calculations and symmetry analysis, we predict that 2D Mn$_{2}$N$_{3}$ is a nodal ring semimetal (NRSM) with three energy bands near the Fermi energy level consisting of electrons in the same spin channel. An electron-like energy band and two hole-like energy bands near the Fermi plane cross to form two NRs centered at the point $\varGamma $. Symmetry analysis shows that the spin-polarized NR semimetal is robust to SOC due to the conservation of horizontal mirror symmetry. Monte-Carlo simulations further demonstrate that the $T_{\mathrm{C}}$ of the 2D Mn$_{2}$N$_{3}$ reaches 530 K, well above the room temperature. Notably, the 2D Mn$_{2}$N$_{3}$ remains an NRSM on h-BN substrate. Our results not only reveal a general framework for designing 2D NR materials, but also promote further research in the direction of multifunctional quantum devices for spintronics.
Keywords:  first-principles calculation      semi-metal      nodal ring      Curie temperature  
Received:  15 July 2022      Revised:  09 September 2022      Accepted manuscript online:  15 September 2022
PACS:  72.25.-b (Spin polarized transport)  
  31.15.A- (Ab initio calculations) (Electronic structure and bonding characteristics)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
Fund: Project supported by Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043), and National Natural Science Foundation of China (Grant Nos. 52173283 and 62071200).
Corresponding Authors:  Miao-Juan Ren, Chang-Wen Zhang     E-mail:;

Cite this article: 

Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文) High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice 2022 Chin. Phys. B 31 127203

[1] Burkov A 2016 Nat. Mater. 15 1145
[2] Velury S and Hughes T L 2022 Phys. Rev. B 105 184105
[3] Weng H, Dai X and Fang Z 2016 J. Phys.: Condens. Matter 28 303001
[4] Feng X, Zhu J, Wu W and Yang S A 2021 Chin. Phys. B 30 107304
[5] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[6] Chen Y, Xie Y, Yang S A, Pan H, Zhang F, Cohen M L and Zhang S 2015 Nano Lett. 15 6974
[7] Steinberg J A, Young S M, Zaheer S, Kane C L, Mele E J and Rappe A M 2014 Phys. Rev. Lett. 112 036403
[8] Liu Z, Zhou B, Zhang Y, Wang Z, Weng H M, Prabhakaran D, Mo S K, Shen Z, Fang Z and Dai X 2014 Science 343 864
[9] Wieder B J, Kim Y, Rappe A and Kane C 2016 Phys. Rev. Lett. 116 186402
[10] Watanabe H, Po H C, Zaletel M P and Vishwanath A 2016 Phys. Rev. Lett. 117 096404
[11] Li S, Liu Y, Wang S S, Yu Z M, Guan S, Sheng X L, Yao Y and Yang S A 2018 Phys. Rev. B 97 045131
[12] Feng B, Fu B, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S, Mahatha S K and Sheverdyaeva P 2017 Nat. Commun. 8 1
[13] Chen C, Zeng X T, Chen Z, Zhao Y, Sheng X L and Yang S A 2022 Phys. Rev. Lett. 128 026405
[14] Du X L, Chen R, Wang R and Xu D H 2022 Phys. Rev. B 105 L081102
[15] Jin L, Zhang X, Liu Y, Dai X and Liu G 2022 Phys. Rev. B 105 075414
[16] Li X Y, Zhang M H, Ren M J and Zhang C W 2020 Phys. Chem. Chem. Phys. 22 27024
[17] Pang Z X, Zhao Y C, Ji W X, Wang Y and Li P 2021 Phys. Chem. Chem. Phys. 23 12280
[18] Li K K and Hu J P 2017 Chin. Phys. Lett. 34 077501
[19] Fang C, Weng H, Dai X and Fang Z 2016 Chin. Phys. B 25 117106
[20] Chen S, Lou Z, Zhou Y, Chen Q, Xu B, Wu C, Du J, Yang J, Wang H and Fang M 2021 Chin. Phys. Lett. 38 017202
[21] Li J, Zhao L X, Wang Y Y, Wang X M, Ma C Y, Zhu W L, Gao M R, Zhang S, Ren Z A and Chen G F 2019 Chin. Phys. B 28 046202
[22] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108
[23] Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[24] Zhao X, Guo P J, Ma F and Lu Z Y 2021 Phys. Rev. B 103 085138
[25] Takahashi R, Hirayama M and Murakami S 2017 Phys. Rev. B 96 155206
[26] Rhim J W and Kim Y B 2015 Phys. Rev. B 92 045126
[27] Kopnin N, Heikkilä T and Volovik G 2011 Phys. Rev. B 83 220503
[28] Huh Y, Moon E G and Kim Y B 2016 Phys. Rev. B 93 035138
[29] Yan B and Felser C 2016 arXiv: 1611.04182
[30] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[31] Ventra M D, Pantelides S and Lang N 2000 Phys. Rev. Lett. 84 979
[32] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[33] Leenheer J, Van Heerde H J, Bijmolt T H and Smidts A 2007 Int. J. Res. Mark. 24 31
[34] Wu J, Liu J and Liu X J 2014 Phys. Rev. Lett. 113 136403
[35] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[36] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A and Niu Q 2014 Phys. Rev. Lett. 112 116404
[37] Wang Y P, Li S S, Zhang C W, Zhang S F, Ji W X, Li P and Wang P J 2018 J. Mater. Chem. C 6 10284
[38] Zhang L, Zhang C W, Zhang S F, Ji W X, Li P and Wang P J 2019 Nanoscale 11 5666
[39] Zhang L, Zhang S F, Ji W X, Zhang C W, Li P, Wang P J, Li S S and Yan S S 2018 Nanoscale 10 20748
[40] Hafner J 2008 J. Comput. Chem. 29 2044
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Blöchl P E 1994 Phys. Rev. B 50 17953
[43] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[44] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[45] Togo A and Tanaka I 2015 Scripta Mater. 108 1
[46] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[47] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[48] Wang X, Yates J R, Souza I and Vanderbilt D 2006 Phys. Rev. B 74 195118
[49] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A and Cobden D H 2017 Nature 546 270
[50] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C and Wang Y 2017 Nature 546 265
[51] Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!