Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 046106    DOI: 10.1088/1674-1056/25/4/046106
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Channeling of fast ions through the bent carbon nanotubes: The extended two-fluid hydrodynamic model

Lazar Karbunar1, Duško Borka2, Ivan Radović2, Zoran L Mišković3
1 School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11120 Belgrade, Serbia;
2 Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia;
3 Department of Applied Mathematics and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Abstract  We investigate the interactions of charged particles with straight and bent single-walled carbon nanotubes (SWNTs) under channeling conditions in the presence of dynamic polarization of the valence electrons in carbon. This polarization is described by a cylindrical, two-fluid hydrodynamic model with the parameters taken from the recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nano-structures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at a speed of 3 atomic units. The image potential is then combined with the Doyle-Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Using that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential.
Keywords:  nanotubes      channeling      dynamic polarization  
Received:  14 August 2015      Revised:  03 December 2015      Accepted manuscript online: 
PACS:  61.85.+p (Channeling phenomena (blocking, energy loss, etc.) ?)  
  41.75.Ht (Relativistic electron and positron beams)  
  61.82.Rx (Nanocrystalline materials)  
Fund: Project supported by the Funds from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 45005). Z. L. Mišković thanks the Natural Sciences and Engineering Research Council of Canada for Finacial Support.
Corresponding Authors:  Duško Borka     E-mail:  ziloot@verat.net

Cite this article: 

Lazar Karbunar, Duško Borka, Ivan Radović, Zoran L Mišković Channeling of fast ions through the bent carbon nanotubes: The extended two-fluid hydrodynamic model 2016 Chin. Phys. B 25 046106

[1] Klimov V V and Letokhov V S 1996 Phys. Lett. A 222 424
[2] Dedkov G V 1998 Nucl. Instrum. Method Phys. Res. B 143 584
[3] Zhevago N K and Glebov V I 1998 Phys. Lett. A 250 360
[4] Gevorgian L A, Ispirian K A and Ispirian R K 1998 Nucl. Instrum. Method Phys. Res. B 145 155
[5] Biryukov V M and Bellucci S 2002 Phys. Lett. B 542 111
[6] Artru X, Fomin S P, Shulga N F, Ispirian K A and Zhevago N K 2005 Phys. Rep. 412 89
[7] Krasheninnikov A V and Nordlund K 2005 Phys. Rev. B 71 24540
[8] Matyukhin S I and Frolenkov K Y 2007 Tech. Phys. Lett. 33 58
[9] Moura C S and Amaral L 2007 Carbon 45 185
[10] Zheng L P, Zhu Z Y, Li Y, Zhu D Z and Xia H H 2008 Nucl. Instrum. Method Phys. Res. B 266 849
[11] Mišković Z L 2007 Radiat. Eff. Def. Solids 162 185
[12] Borka D, Petrović S and Nešković N 2011 Channeling of Protons Through Carbon Nanotubes (New York: Nova Science Publishers ISBN 978-1-61122-050-6) p. 1
[13] Li Y, Zheng L P, Zhang W, Xu Z J, Ren C L, Huai P and Zhu Z Y 2011 Chin. Phys. Lett. 28 066101
[14] Cui S W, Zhu R Z, Wang X S and Yang H X 2014 Chin. Phys. B 23 106105
[15] Zhu Z, Zhu D, Lu R, Xu Z, Zhang W and Xia H 2005 Proceedings of the International Conference on Charged and Neutral Particles Channeling Phenomena Vol. 5974 (SPIE, Bellingham, Washington) p. 13-1
[16] Chai G, Heinrich H, Chow L and Schenkel T 2007 Appl. Phys. Lett. 91 103101
[17] Zhang Y Y, Zhao D, You S Y, Song Y H and Wang Y N 2013 Chin. Phys. Lett. 30 096103
[18] Zhang Y Y, Sun J Z, Song Y H, Mišković Z L and Wang Y N 2014 Carbon 71 196
[19] Borka D, Petrović S, Nešković N, Mowbray D J and Mišković Z L 2006 Phys. Rev. A 73 062902
[20] Borka D, Mowbray D J, Mišković Z L, Petrović S and Nešković N 2008 Phys. Rev. A 77 032903
[21] Borka D, Mowbray D J, Mišković Z L, Petrović S and Nešković N 2010 New J. Phys. 12 043021
[22] Nešković N, Petrović S and Borka D 2005 Nucl. Instrum. Method Phys. Res. B 230 106
[23] Nešković N, Borka D, Šopić S and Petrović S 2010 Int. J. Nonlinear Sci. Numer. Simul. 11 1131
[24] Matyukhin S I 2009 Tech. Phys. Lett. 35 318
[25] Mowbray D J, Segui S, Gervasoni J L, Mišković Z L and Arista N R 2010 Phys. Rev. B 82 035405
[26] Nelson F J, Idrobo J C, Fite J D, Mišković Z L, Pennycook S J, Pantelides S T, Lee J U and Diebold A C 2014 Nano Lett. 14 3827
[27] Segui S, Mišković Z L, Gervasoni J L and Arista N R 2013 J. Phys.: Condens. Matter 25 175001
[28] Li C Z, Mišković Z L, Goodman F O and Wang Y N 2013 J. Appl. Phys. 113 184301
[29] Radović I, Borka D and Mišković Z L 2014 Phys. Lett. A 378 2206
[30] Karbunar L, Borka D, Radović I and Mišković Z L 2015 Nucl. Instrum. Method Phys. Res. B 358 82
[31] Borka Jovanović V, Radović I, Borka D and Mišković Z L 2011 Phys. Rev. B 84 155416
[32] Lindhard J 1965 K. Dan, Vidensk. Selsk., Mat.-Fys. Medd. 34 1
[33] Doyle P A and Turner P S 1968 Acta Crystallogr. A 24 390
[34] Saito R, Dresselhaus G and Dresselhaus M S 2001 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p. 1.
[35] Feldman L C, Mayer J W and Picraux S T 1982 Materials Analysis by Ion Channeling (New York: Academic Press)
[36] Borka D, Lukić V, Timko J and Borka Jovanović V 2012 Nucl. Instrum. Method Phys. Res. B 279 169
[37] Borka D, Lukić V, Timko J and Borka Jovanović V 2012 Nucl. Instrum. Method Phys. Res. B 279 198
[38] Petrović S, Borka D, Telečki I and Nešković N 2009 Nucl. Instrum. Method Phys. Res. B 267 2365
[39] Sun X, Zaric S, Daranciang D, Welsher K, Lu Y, Li X and Dai H 2008 J. Am. Chem. Soc. 130 6551
[40] Petrović S, Telečki I, Borka D and Nešković N 2008 Phys. Lett. A 372 6003
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[7] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[8] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[9] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[10] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[11] Optimization of laser focused atomic deposition by channeling
Jie Chen(陈杰), Jie Liu(刘杰), Li Zhu(朱立), Xiao Deng(邓晓), Xinbin Cheng(陈鑫彬), Tongbao Li(李同保). Chin. Phys. B, 2020, 29(2): 020601.
[12] Linear and nonlinear propagation characteristics of multi-Gaussian laser beams
Naveen Gupta and Sandeep Kumar. Chin. Phys. B, 2020, 29(11): 114210.
[13] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[14] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[15] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
No Suggested Reading articles found!