Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114210    DOI: 10.1088/1674-1056/abb306
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Linear and nonlinear propagation characteristics of multi-Gaussian laser beams

Naveen Gupta and Sandeep Kumar
Lovely Professional University, Phagwara, India
Abstract  

Theoretical investigation on the propagation characteristics of a new class of laser beams known as multi Gaussian (M.G) laser beams has been presented. To investigate the linear characteristics, propagation of the laser beam in vacuum has been considered. Whereas, the nonlinear characteristics have been investigated in plasmas. Optical nonlinearity of the plasma has been modeled by relativistic mass nonlinearity of the plasma electrons in the field of laser beam. Formulation is based on finding the semi analytical solution of the wave equation for the slowly varying envelope of the laser beam. Particularly, the dynamical evolutions of the beam width and longitudinal phase of the laser beam have been investigated in detail.

Keywords:  self-focusing      multi Gaussian      self phase modulation      self-channeling  
Received:  27 September 2019      Revised:  01 August 2020      Accepted manuscript online:  27 August 2020
Corresponding Authors:  Corresponding author. E-mail: naveens222@rediffmail.com Corresponding author. E-mail: sandy.dadra@yahoo.com   

Cite this article: 

Naveen Gupta and Sandeep Kumar Linear and nonlinear propagation characteristics of multi-Gaussian laser beams 2020 Chin. Phys. B 29 114210

Fig. 1.  

3D intensity profile of the M.G laser beam for (a) x0/r0 = 0, (b) x0/r0 = 0.50 (c) x0/r0 = 1, (d) x0/r0 = 1.50, and (e) x0/r0 = 1.75.

Fig. 2.  

Variation of the ration Σ(0) of the r.m.s beam widths of an input M.G beam to that of a Gaussian beam with x0/r0.

Fig. 3.  

Variation of beam width parameter f against the distance of propagation for different values of x0/r0 viz., x0/r0 = 0, 1.50, and 1.80 in the absence of nonlinear refraction.

Fig. 4.  

Variarion of beam width parameter f with dimensionless distance of propagation ξ for different values of x0/r0 viz., x0/r0 = 0, 0.75, and 1.50.

Fig. 5.  

Variarion of beam width parameter f with dimensionless distance of propagation ξ for different values of x0/r0 viz., x0/r0 = 1.60, 1.70, and 1.80.

Fig. 6.  

Phase space plots for self-focused M.G laser beam for different values of x0/r0 viz., x0/r0 = 0, 0.75, and 1.50.

Fig. 7.  

Phase space plots for self-focused M.G laser beam for different values of x0/r0 viz., x0/r0 = 1.60, 1.70, and 1.80.

Fig. 8.  

Variation of potential function for self-focused M.G laser beam for different values of x0/r0 viz., x0/r0 = 0, 0.75, and 1.50.

Fig. 9.  

Variation of potential function for self-focused M.G laser beam for different values of x0/r0 viz., x0/r0 = 1.60, 1.70, and 1.80.

Fig. 10.  

Variation of equilibrium beam width re against the normalized intensity $\beta {E}_{00}^{2}$ for different values of x0/r0 viz., x0/r0 = 0, 0.75, and 1.50.

Fig. 11.  

Variation of equilibrium beam width re against the normalized intensity $\beta {E}_{00}^{2}$ for different values of x0/r0 viz., x0/r0 = 1.60, 1.70, and 1.80.

Fig. 12.  

Variation of angular momentum l of M.G beam in (f,θf) plane with x0/r0

Fig. 13.  

Variation of the ratio ΣK(0) of the r.m.s beam widths of an input M.G beam to that of a Gaussian beam with x0/r0

Fig. 14.  

Variarion of longitudinal phase θp with dimensionless distance of propagation ξ for different values of x0/r0 viz., x0/r0 = 0, 0.75, and 1.50.

Fig. 15.  

Variarion of longitudinal phase θp with dimensionless distance of propagation ξ for different values of x0/r0 viz., x0/r0 = 1.60, 1.70, and 1.80.

[1]
Chiao R Y, Garmire E, Townes C H 1965 Phys. Rev. Lett. 13 479 DOI: 10.1103/PhysRevLett.13.479
[2]
Askaryan G A 1962 Soviet Phys. JETP 15 1088
[3]
Gouy L G 1890 C. R. Acad. Sci. Paris Ser. IV 110 1251
[4]
Boyd R W 1980 J. Opt. Soc. Am. 70 877 DOI: 10.1364/JOSA.70.000877
[5]
Feng S, Winful H G 2001 Opt. Lett. 26 485 DOI: 10.1364/OL.26.000485
[6]
Hariharan P, Robinson P A 1996 J. Mod. Opt 43 219
[7]
Yang J, Winful G 2006 Opt. Lett. 31 104 DOI: 10.1364/OL.31.000104
[8]
Kumar A 2013 Plasmonics 8 1135 DOI: 10.1007/s11468-013-9521-2
[9]
Singh A, Gupta N 2015 Cont. Plasma Phys. 55 501
[10]
Gupta D N, Suk H 2011 Phys. Plasmas 18 124501 DOI: 10.1063/1.3662098
[11]
Gupta N, Singh N, Singh A 2015 Phys. Plasmas 22 113106 DOI: 10.1063/1.4935844
[12]
Akhiezer A I, Polovin R V 1956 Sov. Phys. JETP 3 696
[13]
Singh A, Gupta N 2015 Phys. Plasmas 22 062115 DOI: 10.1063/1.4922903
[14]
Kelley P L 1965 Phys. Rev. Lett. 15 1005 DOI: 10.1103/PhysRevLett.15.1005
[15]
Alfano R R, Shapiro S L 1992 Phys. Rev. A 46 2726 DOI: 10.1103/PhysRevA.46.2726
[16]
Gustafson T K, Taran J P, Haus H A, Lifsitz J R, Kelley P L 1969 Phys. Rev. 177 306 DOI: 10.1103/PhysRev.177.306
[17]
Karlsson M 1992 Phys. Rev. A 46 2726 DOI: 10.1103/PhysRevA.46.2726
[18]
Manassah J T, Baldeck P L, Alfano R R 1988 Opt. Lett. 13 589 DOI: 10.1364/OL.13.000589
[19]
Karlsson M, Anderson D, Desaix M 1952 Opt. Lett. 17 22 DOI: 10.1364/OL.17.000022
[20]
Habibi M, Ghamari F 2012 Phys. Plasmas 19 113109 DOI: 10.1063/1.4768221
[21]
Habibi M, Ghamari F 2012 Phys. Plasmas 19 103110 DOI: 10.1063/1.4762848
[22]
Gupta D N, Hur M S, Suk H 2007 Appl. Phys. Lett. 91 081505 DOI: 10.1063/1.2773943
[23]
Sati P, Sharma A, Tripathi V K 2012 Phys. Plasmas 19 092117 DOI: 10.1063/1.4754696
[24]
Moshkelgosha M 2016 IEEE Trans. Plasma Sci. 44 894 DOI: 10.1109/TPS.2016.2555947
[25]
Wang Y, Yuan C, Zhou Z, Li L, Du Y 2011 Phys. Plasmas 18 113105 DOI: 10.1063/1.3662433
[26]
Taniuti T, Washimi H 1968 Phys. Rev. Lett. 21 209 DOI: 10.1103/PhysRevLett.21.209
[27]
Ablowitz M J, Segur H J 1979 Fluid Mech. 92 691 DOI: 10.1017/S0022112079000835
[28]
Lam J F, Lippmann B, Tappert F 1977 Phys. Fluids 20 1176 DOI: 10.1063/1.861679
[1] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[2] Comprehensive research on self phase modulation based optical delay systems
Yang Ai-Ying(杨爱英) and Sun Yu-Nan(孙雨南). Chin. Phys. B, 2010, 19(11): 114205.
[3] Nonlinear images of scatterers in chirped pulsed laser beams
Hu Yong-Hua(胡勇华), Wang You-Wen(王友文), Wen Shuang-Chun(文双春), and Fan Dian-Yuan(范滇元). Chin. Phys. B, 2010, 19(11): 114207.
[4] Simulation analysis of evolution of hot-images induced by coplanar multi-scatterers
Peng Tao(彭涛), Zhao Jian-Lin(赵建林), Li Dong(李东), Ye Zhi-Jun(叶知隽), and Xie Liang-Ping(谢良平). Chin. Phys. B, 2009, 18(5): 1884-1890.
[5] Self-compression of femtosecond pulses in argon with a power close to the self-focusing threshold
Chen Xiao-Wei(陈晓伟), Zeng Zhi-Nan(曾志男), Dai Jun(戴君), Li Xiao-Fang(李小芳), Li Ru-Xin(李儒新), and Xu Zhi-Zhan(徐至展) . Chin. Phys. B, 2008, 17(5): 1826-1832.
[6] Intense laser beam guiding in self-induced electron cavitation channel in underdense plasmas
Cang Yu(苍宇), Yu Wei(余玮), Wu Hui-Chun(武慧春), Xu Han(徐涵), and Tian You-Wei(田友伟). Chin. Phys. B, 2007, 16(2): 456-462.
[7] The propagation dynamics of ultraviolet light filament with Rayleigh scattering in air
Zhang Hua (张华). Chin. Phys. B, 2005, 14(10): 2019-2025.
[8] Optical breakdown and filamentation of femtosecond laser pulses propagating in air at a kHz repetition rate
Duan Zuo-Liang (段作梁), Chen Jian-Ping (陈建平), Li Ru-Xin (李儒新), Lin Li-Huang (林礼煌), Xu Zhi-Zhan (徐至展). Chin. Phys. B, 2004, 13(3): 359-363.
No Suggested Reading articles found!