Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 047305    DOI: 10.1088/1674-1056/25/4/047305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect

Fan-Yu Liu(刘凡宇)1, Heng-Zhu Liu(刘衡竹)1, Bi-Wei Liu(刘必慰)1, Yu-Feng Guo(郭宇峰)2
1 School of Computer, National University of Defense Technology, Changsha 410073, China;
2 Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 201131, China
Abstract  In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the lateral gates increases and therefore the influence of back gate on the threshold voltage weakens. For a narrow and tall fin, the lateral gates mainly control the channel and therefore the effect of back gate decreases. A simple two-dimensional (2D) potential model is proposed for the subthreshold region of junctionless SOI FinFET. TCAD simulations validate our model. It can be used to extract the threshold voltage and doping concentration. In addition, the tuning of back gate on the threshold voltage can be predicted.
Keywords:  coupling effect      threshold voltage      subthreshold region      SOI FinFETs      junctionless      front gate      lateral gate      back gate  
Received:  25 October 2015      Revised:  26 December 2015      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.-z (Semiconductor devices)  
  77.55.df (For silicon electronics)  
Fund: Project supported by the Research Program of the National University of Defense Technology (Grant No. JC 13-06-04).
Corresponding Authors:  Fan-Yu Liu     E-mail:  liufanyu986412@hotmail.com

Cite this article: 

Fan-Yu Liu(刘凡宇), Heng-Zhu Liu(刘衡竹), Bi-Wei Liu(刘必慰), Yu-Feng Guo(郭宇峰) An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect 2016 Chin. Phys. B 25 047305

[1] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Anne-Marie K, Brendan M and Richard M 2010 Nature Nanotechnology 5 225
[2] Doria R T, Pavanello M A, Trevisoli R D, de Souza M, Lee C W, Ferain I, Akhavan N D, Ran Y, Razavi P, Ran Y, Kranti A and Colinge J P 2011 IEEE Trans. Electron Dev. 58 2511
[3] Kranti A, Lee C W, Ferain I, Yan R, Akhavan N, Razavi P, Yu R, Armstrong, G A and Colinge J P 2010 Electron Lett. 46 1491
[4] Baek D J, Duarte J P, Moon D I, Kim C H, Ahn J H and Choi Y K 2012 Appl. Phys. Lett. 100 213703
[5] Lim H K and Fossum J G 1983 IEEE Trans. Electron Dev. 30 1244
[6] Fernandez C, Rodriguez N, Ohata A, Gamiz, F, Andrieu F, Fenouillet-Beranger C, Faynot O and Cristoloveanu S 2013 IEEE Electron Dev. Lett. 34 840
[7] Parihar M S, Liu F Y, Navarro C, Barraud S, Bawedin M, Ionica I, Kranti A and Cristoloveanu S 2015 Proceedings of 45th Europe Solid-State Device Conference, Wien, Austria, p. 61
[8] Park S J, Jeon D Y, Mont'es L, Barraud S, Kim G T and Ghibaudo G 2013 Solid-State Electron. 87 74
[9] Chang S J, Bawedin M, Guo Y F, Liu F Y, Akarvardar K, Lee J H, Ionica I and Cristoloveanu S 2014 Solid-State Electron. 97 88
[10] Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I and Colinge J P 2009 Appl. Phys. Lett. 94 053511
[11] Lee C W, Ferain I, Afzalian A, Yan R, Akhavan N D, Razavi P and Colinge J P 2010 Solid-State Electron. 54 97
[12] Sallese J M, Chevillon N, Lallement C, Iñíguez B and Pregaldiny F 2011 IEEE Trans. Electron Dev. 58 2628
[13] Colinge J P 1990 IEEE Trans. Electron Dev. 37 718
[14] Duarte J P, Choi S J and Choi Y K 2011 IEEE Trans. Electron Dev. 58 4219
[15] Holtij T, Schwarz M, Kloes A and Iñíguez B 2013 Solid-State Electron. 90 107
[16] Trevisoli R D, Doria R T, de Souza M, Das S, Ferain I and Pavanello M A 2012 IEEE Trans. Electron Dev. 59 3510
[17] Colinge J P, Kranti A, Yan R, Lee C W, Ferain I, Yu R, Akhavan N D and Razavi P 2011 Solid-State Electron. 65 33
[18] Jeon D Y, Park S J, Mouis M, Barraud S, Kim G T and Ghibaudo G 2013 Solid-State Electron. 81 58
[19] Synopsys Inc., TCAD Sentaurus User Manual G-2012.06 2012
[20] Liu F Y, Diab A, Ionica I, Akarvardar K, Hobbs C, Ouisse T, Mescot X and Cristoloveanu S 2013 Solid-State Electron. 90 65
[21] Akarvardar K, Mercha A, Cristoloveanu S, Gentil P, Simoen E, Subramanian V and Claeys C 2007 IEEE Trans. Electron Dev. 54 767
[22] Hu W D, Chen X S, Zhou X C, Quan Z J and Wei L 2006 Microelectron. J. 37 613
[23] Jeon D Y, Park S J, Mouis M, Berthomé M, Barraud S, Kim G T and Ghibaudo G 2013 Solid-State Electron. 90 86
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Effect of kinetic ions on the toroidal double-tearing modes
Ruibo Zhang(张睿博), Lei Ye(叶磊), Yang Chen, Nong Xiang(项农), and Xiaoqing Yang(杨小庆). Chin. Phys. B, 2023, 32(2): 025203.
[3] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[4] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[5] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[6] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[7] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[8] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[9] Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure
Ruo-Han Li(李若晗), Wu-Xiong Fei(费武雄), Rui Tang(唐锐), Zhao-Xi Wu(吴照玺), Chao Duan(段超), Tao Zhang(张涛), Dan Zhu(朱丹), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087305.
[10] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[11] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[12] Device physics and design of FD-SOI JLFET with step-gate-oxide structure to suppress GIDL effect
Bin Wang(王斌), Xin-Long Shi(史鑫龙), Yun-Feng Zhang(张云峰), Yi Chen(陈伊), Hui-Yong Hu(胡辉勇), and Li-Ming Wang(王利明). Chin. Phys. B, 2021, 30(4): 047401.
[13] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[14] New DDSCR structure with high holding voltage for robust ESD applications
Zi-Jie Zhou(周子杰), Xiang-Liang Jin(金湘亮), Yang Wang(汪洋), and Peng Dong(董鹏). Chin. Phys. B, 2021, 30(3): 038501.
[15] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
No Suggested Reading articles found!