Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 040702    DOI: 10.1088/1674-1056/25/4/040702
GENERAL Prev   Next  

Preparation and room temperature NO2-sensing performances of porous silicon/V2O5 nanorods

Wen-Jun Yan(闫文君), Ming Hu(胡明), Ji-Ran Liang(梁继然), Deng-Feng Wang(王登峰), Yu-Long Wei(魏玉龙), Yu-Xiang Qin(秦玉香)
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract  In this paper, porous silicon/V2O5 nanorod composites are prepared by a heating process of as-sputtered V film on porous silicon (PS) at 600 ℃ for different times (15, 30, and 45 min) in air. The morphologies and crystal structures of the samples are investigated by field emission scanning electron microscope (FESEM), x-ray diffractometer (XRD), x-ray photoelectron spectroscopy (XPS), and Raman spectrum (RS). An improved understanding of the growth process of V2O5 nanorods on PS is presented. The gas sensing properties of samples are measured for NO2 gas of 0.25 ppm~3 ppm at 25 ℃. We investigate the effects of the annealing time on the NO2-sensing performances of the samples. The sample obtained at 600 ℃ for 30 min exhibits a very strong response and fast response-recovery rate to ppm level NO2, indicating a p-type semiconducting behavior. The XPS analysis reveals that the heating process for 30 min produces the biggest number of oxygen vacancies in the nanorods, which is highly beneficial to gas sensing. The significant NO2 sensing performance of the sample obtained at 600 ℃ for 30 min probably is due to the strong amplification effect of the heterojunction between PS and V2O5 and a large number of oxygen vacancies in the nanorods.
Keywords:  V2O5 nanorods      porous silicon      heterojunction      NO2-sensing  
Received:  21 October 2015      Revised:  06 December 2015      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  68.35.bg (Semiconductors)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271070, 61274074, and 61574100).
Corresponding Authors:  Yu-Xiang Qin     E-mail:  qinyuxiang@tju.edu.cn

Cite this article: 

Wen-Jun Yan(闫文君), Ming Hu(胡明), Ji-Ran Liang(梁继然), Deng-Feng Wang(王登峰), Yu-Long Wei(魏玉龙), Yu-Xiang Qin(秦玉香) Preparation and room temperature NO2-sensing performances of porous silicon/V2O5 nanorods 2016 Chin. Phys. B 25 040702

[1] Wang Y L, Jiang X C and Xia Y N 2003 J. Am. Chem. Soc. 125 16176
[2] Kolmakov A and Moskovits M 2004 Ann. Rev. Mater. Res. 34 151
[3] Li C, Zhang D H, Liu X L, Han S, Tang T, Han J and Zhou C W 2003 Appl. Phys. Lett. 82 1613
[4] Li S, Li F L and Zhou S M 2009 Chin. Phys. B 18 3985
[5] Miller D R, Akbar S A and Morris P A 2014 Sens. Actuators B: Chem. 204 250
[6] Kolmakov A, Klenov D O, Lilach Y, Stemmer S and Moskovits M 2005 Nano Lett. 5 667
[7] Li X W, Zhou X, Guo H, Wang C, Liu J Y, Sun P, Liu F M and Lu G Y 2014 ACS Appl. Mater. Interfaces 6 18661
[8] Shin J, Choi S J, Lee I, Youn D Y, Park C O, Lee J H, Tuller H L and Kim I D 2013 Adv. Funct. Mater. 23 2357
[9] Bai S L, Chen S, Zhao Y B, Guo T, Luo R X, Li D Q and Chen A F 2014 J. Mater. Chem. A 2 16697
[10] Liu C B, He Y and Wang S L 2015 Chin. Phys. B 24 118501
[11] Bai S, Guo T, Zhao Y, Luo R, Li D, Chen A and Liu C C 2013 J. Mater. Chem. A 1 11335
[12] Huang H, Gong H, Chow C L, Guo J, White T J, Tse M S and Tan O K 2011 Adv. Funct. Mater. 21 2680
[13] Mashock M, Yu K H, Cui S M, Mao S, Lu G H and Chen J H 2012 ACS Appl. Mater. Interfaces 4 4192
[14] Park S, An S, Mun Y and Lee C 2013 ACS Appl. Mater. Interfaces 5 4285
[15] Kim I D, Rothschild A, Lee B H, Kim D Y, Jo S M and Tuller H L 2006 Nano Lett. 6 2009
[16] Wongchoosuk C, Wisitsoraat A, Phokharatkul D, Tuantranont A and Kerdcharoen T 2010 Sensors 10 7705
[17] Yan D L, Hu M, Li S Y, Liang J R, Wu Y Q and Ma S Y 2014 Electrochim. Acta 115 297
[18] An X Q, Yu J C, Wang Y, Hu Y M, Yu X L and Zhang G J 2012 J. Mater. Chem. 22 8525
[19] Niu F, Liu J M, Tao L M, Wang W and Song W G 2013 J. Mater. Chem. A 1 6130
[20] Ozdemir S and Gole J L 2007 Curr. Opin. Solid St. Mater. Sci. 11 92
[21] Cao A M, Hu J S, Liang H P and Wan L J 2005 Angew. Chem.-Int. Ed. 44 4391
[22] Gu G, Schmid M, Chiu P W, Minett A, Fraysse J, Kim G T, Roth S, Kozlov M, Munoz E and Baughman R H 2003 Nat. Mater. 2 316
[23] Leroy C M, Achard M-F, Babot O, Steunou N, Massé P, Livage J, Binet L, Brun N and Backov R 2007 Chem. Mater. 19 3988
[24] Jin W, Yan S L, An L, Chen W, Yang S, Zhao C X and Dai Y 2015 Sens. Actuators B: Chem. 206 284
[25] Modafferi V, Panzera G, Donato A, Antonucci P L, Cannilla C, Donato N, Spadaro D and Neri G 2012 Sens. Actuators B: Chem. 163 61
[26] Raible I, Burghard M, Schlecht U, Yasuda A and Vossmeyer T 2005 Sens. Actuators B: Chem. 106 730
[27] Yu M L, Liu X Q, Wang Y, Zheng Y B, Zhang J W, Li M Y, Lan W and Su Q 2012 Appl. Surf. Sci. 258 9554
[28] Li M D, Hu M, Liu Q L, Ma S Y and Sun P 2013 Appl. Surf. Sci. 268 188
[29] Kanungo J, Saha H and Basu S 2010 Sens. Actuators B: Chem. 147 128
[30] Kumar Y, Garcia J E, Singh F, Olive-Mendez S F, Sivakumar V V, Kanjilal D and Agarwal V 2012 Appl. Surf. Sci. 258 2283
[31] Mendoza-Aguero N, Kumar Y, Olive-Mendez S F, Campos-Alvarez J and Agarwal V 2014 Ceram. Int. 40 16603
[32] Yan W J, Hu M, Zeng P, Ma S Y and Li M D 2014 Appl. Surf. Sci. 292 551
[33] Yan W, Hu M, Wang D and Li C 2015 Appl. Surf. Sci. 346 216
[34] Li M D, Hu M, Yan W J, Ma S Y, Zeng P and Qin Y X 2013 Electrochim. Acta 113 354
[35] Zou C W, Yan X D, Patterson D A, Emanuelsson E A C, Bian J M and Gao W 2010 Crystengcomm 12 691
[36] Zou C W, Fan L L, Chen R Q, Yan X D, Yan W S, Pan G Q, Wu Z Y and Gao W 2012 Crystengcomm 14 626
[37] Sathiya M, Prakash A S, Ramesha K, Tarascon J M and Shukla A K 2011 J. Am. Chem. Soc. 133 16291
[38] Maffeis T G G, Yung D, LePennec L, Penny M W, Cobley R J, Comini E, Sberveglieri G and Wilks S P 2007 Surf. Sci. 601 4953
[39] Su Q, Huang C K, Wang Y, Fan Y C, Lu B A, Lan W, Wang Y Y and Liu X Q 2009 J. Alloys Compd. 475 518
[40] Chernova N A, Roppolo M, Dillon A C and Whittingham M S 2009 J. Mater. Chem. 19 2526
[41] Boston R, Schnepp Z, Nemoto Y, Sakka Y and Hall S R 2014 Science 344 623
[42] Liang Y C and Cheng Y R 2015 Crystengcomm 17 5801
[43] Kim H S, Jin C H, Park S H and Lee C M 2013 J. Electroceram. 30 6
[44] He X L, Li J P and Gao X G 2004 Sens. Actuators B: Chem. 108 207
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[7] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[8] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[9] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[10] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[11] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[12] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[13] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[14] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[15] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
No Suggested Reading articles found!