Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 040303    DOI: 10.1088/1674-1056/25/4/040303
GENERAL Prev   Next  

Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties

A Karimi1,3, M K Tavassoly1,2
1 Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd, Iran;
2 The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran;
3 Physics Group, Islamic Azad University of Abadeh, Fars, Iran
Abstract  In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A=f(n)a on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes-Cummings model.
Keywords:  squeezed states      deformed photon-added entangled states      entanglement      quantum polarization  
Received:  18 September 2015      Revised:  16 October 2015      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.-p (Quantum optics)  
Corresponding Authors:  A Karimi, M K Tavassoly     E-mail:  amirkarimi.phy@stu.yazd.ac.ir;mktavassoly@yazd.ac.ir

Cite this article: 

A Karimi, M K Tavassoly Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties 2016 Chin. Phys. B 25 040303

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Bennett C H, Brassard G, Créeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Ekert A 1991 Phys. Rev. Lett. 67 661
[4] Barenco A, Dutch D, Ekert A and Jozsa R 1995 Phys. Rev. Lett. 74 4083
[5] Bužek V, Barranco A V and Knight P L 1992 Phys. Rev. A 45 6570
[6] Donodov V V, Malkin I A and Man'ko V I 1974 Physica 72 597
[7] Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13
[8] Sanders B C 1992 Phys. Rev. A 45 6811
[9] Yurke B and Stoler D 1987 Phys. Rev. A 35 4846
[10] Karimi A and Tavassoly M K 2015 Phys. Scr. 90 015101
[11] de Matos Filho R L and Vogel W 1996 Phys. Rev. A 54 4560
[12] Zhang Z M, Yang J and Yu Y F 2007 Chin. Phys. Lett. 24 352
[13] Kuanga L M, Zeng A H and Kuang Z H 2003 Phys. Lett. A 319 24
[14] Barnett S M and Knight P L 1985 J. Opt. Soc. Am. B 2 467
[15] Barnett S M and Knight P L 1987 J. Mod. Opt. 34 841
[16] Hong-yi F 1990 Phys. Rev. A 41 1526
[17] Stoler D 1970 Phys. Rev. D 1 3217
[18] Stoler D 1971 Phys. Rev. D 4 1935
[19] Slusher R E, Hollberg L W, Yurke B, Mertz J C and ValleySlusher J F 1985 Phys. Rev. Lett. 55 2409
[20] Wang J, Sui Q and Wang C 1995 Quantum Semiclass. Opt. 7 917
[21] Zhao L H, Yang Z Y, Zhang Z J and Hou X 2000 Acta Photon. Sin. 29 193
[22] Hou Y, Meng J D, Tian L K, Hu Y F, Wan Y and Yang Z Y 2001 Acta Photon. Sin. 30 1194
[23] Ming C S, Xu D G and An Y Y 2002 Acta Photon. Sin. 31 412
[24] Shapiro J H 1980 Opt. Lett. 5 351
[25] Righini G C, Tajani A and Cutolo A 2009 An Introduction to Optoelectronic Sensors (Singapore: World Scientific)
[26] Caves C M 1981 Phys. Rev. D 23 1693
[27] Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J A 1992 J. Cryptology 5 3
[28] Muller A, Breguet J and Gisin N 1993 Europhys. Lett. 23 383
[29] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337
[30] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[31] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[32] Luis A 2002 Phys. Rev. A 66 013806
[33] Barbieri M, De Martini F, Di Nepi G, Mataloni P, De Ariano G M and Macchiavello C 2003 Phys. Rev. Lett. 91 227901
[34] Luis A 2005 Phys. Rev. A 71 063815
[35] Luis A 2007 Phys. Rev. A 75 053806
[36] Stokes G G 1852 Trans. Cambridge Philos. Soc. 9 399
[37] Glauber J 1963 Phys. Rev. 131 2766
[38] Agarwal G S, Tara K 1991 Phys. Rev. A 43 492
[39] Zavatta A, Viciani S, Bellini M 2005 Phys. Rev. A 72 023820
[40] Safaeian O and Tavassoly M K 2011 J. Phys. A: Math. Theor. 44 225301
[41] Dibakar E, Tavassoly M K and karimi A 2015 Phys. Scr. 90 085102
[42] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[43] Cummings F W 1965 Phys. Rev. A 140 1051
[44] Gerry C C and Knight P L 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press)
[45] Buck B and Sukumar C V 1981 Phys. Lett. A 81 132
[46] Agarwal G S and Singh S 1982 Phys. Rev. A 25 3195
[47] Huang C, Tang L, Kong F, Fang J and Zhou M 2006 Physica A 368 25
[48] Sukumar C V and Buck B 1984 J. Phys. A: Math. Gen. 17 877
[49] Fink J M, Goppl M, Baur M, Bianchetti R, Leek P J, Blais A and Wallraff A 2008 Nature 454 315
[50] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[51] Mann A, Sanders B C and Munro W J 1995 Phys. Rev. A 51 989
[52] Rungta P, Buzék V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315
[53] Kuang L M and Zhou L 2003 Phys. Rev. A 68 043606
[54] Wang X G 2002 J. Phys. A: Math. Gen. 35 165
[55] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[56] Agarwal G S and Biswas A 2005 J. Opt. B: Quantum Semiclass. Opt. 7 350
[57] Miry S R and Tavassoly M K 2012 J. Phys. B: At. Mol. Opt. Phys. 45 175502
[58] Collett E 1970 Am. J. Phys. 38 563
[59] Brosseau C 1998 Fundamentals of Polarized Light: A Statistical Optics Approach (New York: Wiley)
[60] Mandel L 1979 Opt. Lett. 4 205
[61] Davidovich L 1996 Rev. Mod. Phys. 68 127
[62] Paul H 1982 Rev. Mod. Phys. 54 1061
[63] Song T Q and Fan H Y 2002 J. Phys. A: Math. Gen. 35 1071
[64] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[65] Baghshahi H R, Tavassoly M K and Behjat A 2014 Chin. Phys. B 23 074203
[66] Baghshahi H R, Tavassoly M K and Behjat A 2014 Commun. Theor. Phys. 62 430
[67] Baghshahi H R and Tavassoly M K 2015 Eur. Phys. J. Plus 130 37
[68] Buck B and Sukumar C V 1981 Phys. Lett. A 81 132
[69] Sukumar C V and Buck B 1981 Phys. Lett. A 83 211
[70] Buek V 1989 Phys. Rev. A 39 3196
[71] Sudha Singh, C H Reimond Ooi, Amrita 2012 Phys. Rev. A 86 023810
[72] Gora P and Jedrzejek C 1992 Phys. Rev. A 45 6816
[73] Klimov A B and Chumakov S M 2009 A Group-Theoretical Approach to Quantum Optics (Cambridge: Cambridge University Press)
[74] Rastegarzadeh M and Tavassoly M K 2015 Phys. Scr. 90 025103
[75] Naderi M H, Soltanolkotabi M, Roknizadeh R 2005 Eur. Phys. J. D 32 397
[76] Yadollahi F, Tavassoly M K 2011 Opt. Commun. 284 608
[77] Yadollahi F, Tavassoly M K 2012 Int. J. Mod. Phys. B 26 1250027
[78] Davidovich L, Raimond J M, Brune M and Haroche S 1987 Phys. Rev. A 36 3771
[79] Sing S 1982 Phys. Rev. A 25 3206
[80] Font J L, Fernádez-Soler J J, Vilaseca R and Gauthier D J 2005 Phys. Rev. A 72 063810
[81] Shore B W and Knight P L 1993 J. Mod. Opt. 40 1195
[82] Baghshahi H R, Tavassoly M K and Behjat A 2014 Chin. Phys. B 23 074203
[83] Baghshahi H R, Tavassoly M K and Behjat A 2014 Commun. Theor. Phys. 62 430
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!