CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Resonant Andreev reflection in a normal-metal/quantum-dot/superconductor system with coupled Majorana bound states |
Su-Xin Wang(王素新)1,2, Yu-Xian Li(李玉现)1, Jian-Jun Liu(刘建军)1,3 |
1. College of Physical Science and Information Engineering and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, China;
2. Department of Physics, Hebei Normal University for Nationalities, Chengde 067000, China;
3. Physics Department, Shijiazhuang University, Shijiazhuang 050035, China |
|
|
Abstract Andreev reflection (AR) in a normal-metal/quantum-dot/superconductor (N-QD-S) system with coupled Majorana bound states (MBSs) is investigated theoretically. We find that in the N-QD-S system, the AR can be enhanced when coupling to the MBSs is incorporated. Fano line-shapes can be observed in the AR conductance spectrum when there is an appropriate QD-MBS coupling or MBS-MBS coupling. The AR conductance is always e2/2h at the zero Fermi energy point when only QD-MBSs coupling is considered. In addition, the resonant AR occurs when the MBS-MBS coupling roughly equals to the QD energy level. We also find that an AR antiresonance appears when the QD energy level approximately equals to the sum of the QD-MBS coupling and the MBS-MBS coupling. These features may serve as characteristic signatures for the probe of MBSs.
|
Received: 09 October 2015
Revised: 03 December 2015
Accepted manuscript online:
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
73.23.Hk
|
(Coulomb blockade; single-electron tunneling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176089 and 10974043), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011205092 and 2014205005), and the Fund for Hebei Normal University for Nationalities, China (Grant No. 201109). |
Corresponding Authors:
Jian-Jun Liu
E-mail: liujj@mail.hebtu.edu.cn
|
Cite this article:
Su-Xin Wang(王素新), Yu-Xian Li(李玉现), Jian-Jun Liu(刘建军) Resonant Andreev reflection in a normal-metal/quantum-dot/superconductor system with coupled Majorana bound states 2016 Chin. Phys. B 25 037304
|
[1] |
Majorana E 1937 Nuovo Cimento 14 171
|
[2] |
Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412
|
[3] |
Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
|
[4] |
Leijnse M and Flensberg K 2011 Phys. Rev. Lett. 107 210502
|
[5] |
Zhang D P amd Tian G S 2015 Chin. Phys. B 24 080401
|
[6] |
Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
|
[7] |
Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
|
[8] |
Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
|
[9] |
Chen W, Xue Z Y, Wang Z D and Shen R 2014 Chin. Phys. B 23 030309
|
[10] |
Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
|
[11] |
Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
|
[12] |
Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
|
[13] |
Flensberg K 2011 Phys. Rev. Lett. 106 090503
|
[14] |
Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308
|
[15] |
Li Y X and Bai Z M 2013 J. Appl. Phys. 114 033703
|
[16] |
Wang N, Lv S H and Li Y X 2014 J. Appl. Phys. 115 083706
|
[17] |
Deng M X, Zheng S H, Yang M, Hu L B and Wang R Q 2015 Chin. Phys. B 24 037302
|
[18] |
Lü H F, Lu H Z and Shen S Q 2014 Phys. Rev. B 90 195404
|
[19] |
Gong W J, Zhang S F, Li Z C, Yi G Y and Zheng Y S 2014 Phys. Rev. B 89 245413
|
[20] |
Lü H F, Guo Z, Ke S S, Guo Y and Zhang H W 2015 J. Appl. Phys. 117 164312
|
[21] |
Leijinse M and Flensberg K 2011 Phys. Rev. B 84 140501
|
[22] |
Shang E M, Pan Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 057201
|
[23] |
Chen Wei, Xue Z Y, Wang Z D and Shen R 2014 Chin. Phys. B 23 030309
|
[24] |
Zhou Y and Guo J H 2015 Acta Phys. Sin. 64 167302 (in Chinese)
|
[25] |
Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett. 101 120403
|
[26] |
Zocher B and Rosenow B 2013 Phys. Rev. Lett. 111 036802
|
[27] |
Fazio R and Raimondi R 1998 Phys. Rev. Lett. 80 2913
|
[28] |
Sun Q F, Wang J and Lin T H 1999 Phys. Rev. B 59 3831
|
[29] |
Sun Q F, Wang J and Lin T H 2001 Phys. Rev. Lett. 87 176601
|
[30] |
Barański J and Domański T 2015 Chin. Phys. B 24 017304
|
[31] |
Li Y X 2008 Chin. Phys. Lett. 25 3739
|
[32] |
Fano U 1961 Phys. Rev. 124 1866
|
[33] |
Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283
|
[34] |
Cuevas J C, Martín-Rodero A and Levy Yeyati A 1996 Phys. Rev. B 54 7366
|
[35] |
Haug H and Jauho A P 1998 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer-Verlag)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|