Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018204    DOI: 10.1088/1674-1056/25/1/018204
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Understanding oxygen reactions in aprotic Li-O2 batteries

Shunchao Ma(马顺超)1,2, Yelong Zhang(张业龙)1,2, Qinghua Cui(崔清华)1,2, Jing Zhao(赵婧)1,2, Zhangquan Peng(彭章泉)1
1. State Key Laboratory of Electroanalytical Chemistry, and Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
2. University of Chinese Academy of Sciences, Beijing 100039, China
Abstract  

Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an in-depth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the positive electrode distinguish Li-O2 batteries from the conventional Li-ion cells and play a crucial role in the Li-O2 cell's performance (capacity, rate capability, and cycle life). Recent advances in fundamental studies of oxygen reactions in aprotic Li-O2 batteries are reviewed, including the reaction route, kinetics, morphological evolution of Li2O2, and charge transport within Li2O2. Prospects are also provided for future fundamental investigations of Li-O2 chemistry.

Keywords:  Li-O2 batteries      oxygen reduction reactions      oxygen evolution reactions      kinetics  
Received:  02 June 2015      Revised:  16 July 2015      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  71.38.Ht (Self-trapped or small polarons)  
  82.45.Jn (Surface structure, reactivity and catalysis)  
Fund: 

Project supported by the Recruitment Program of Global Youth Experts of China, the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010401), the Science and Technology Development Program of Jilin Province, China (Grant No. 20150623002TC), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131139).

Corresponding Authors:  Zhangquan Peng     E-mail:  zqpeng@ciac.ac.cn

Cite this article: 

Shunchao Ma(马顺超), Yelong Zhang(张业龙), Qinghua Cui(崔清华), Jing Zhao(赵婧), Zhangquan Peng(彭章泉) Understanding oxygen reactions in aprotic Li-O2 batteries 2016 Chin. Phys. B 25 018204

[1] Armand M and Tarascon J M 2008 Nature 451 652
[2] Girishkumar G, McCloskey B, Luntz A C, Swanson S and Wilcke W 2010 J. Phys. Chem. Lett. 1 2193
[3] Bruce P G, Freunberger S A, Hardwick L J and Tarascon J M 2012 Nat. Mater. 11 19
[4] Peng Z, Freunberger S A, Chen Y and Bruce P G 2012 Science 337 563
[5] Lu J, Li L, Park J B, Sun Y K, Wu F and Amine K 2014 Chem. Rev. 114 5611
[6] Luntz A C and McCloskey B D 2014 Chem. Rev. 114 11721
[7] Chen Y C, Xie K, Pan Y, Zheng C M and Wang H L 2011 Chin. Phys. B 20 028201
[8] Sun Y, Liu L, Dong J P, Zhao B and Huang X J 2011 Chin. Phys. B 20 126101
[9] Luo G S, Huang S T, Zhao N, Cui Z H and Guo X X 2015 Chin. Phys. B 24 088102
[10] Abraham K M and Jiang Z 1996 J. Electrochem. Soc. 143 1
[11] Débart A, Paterson A J, Bao J and Bruce P G 2008 Angew. Chem. 120 4597
[12] Ma S, Sun L, Cong L, Cong L, Gao X, Yao C, Guo X, Tai L, Mei P, Zeng Y, Xie H and Wang R 2013 J. Phys. Chem. C 117 25890
[13] Freunberger S A, Chen Y, Drewett N E, Hardwick L J, Bardé F and Bruce P G 2011 Angew. Chem. Int. Ed. 50 8609
[14] Chen Y, Freunberger S A, Peng Z, Bardé F and Bruce P G 2012 J. Am. Chem. Soc. 134 7952
[15] OttakamThotiyl M M, Freunberger S A, Peng Z and Bruce P G 2013 J. Am. Chem. Soc. 135 494
[16] Adams B D, Radtke C, Black R, Trudeau M L, Zaqhib K and Nazar L F 2013 Energy Environ. Sci. 6 1772
[17] Fan W, Cui Z and Guo X 2013 J. Phys. Chem. C 117 2623
[18] Hassoun J, Croce F, Armand M and Scrosati B 2011 Angew. Chem. Int. Ed. 50 2999
[19] Kumar J and Kumar B 2009 J. Power Sources 194 1113
[20] Laoire C O, Mukerjee S and Abraham K M 2009 J. Phys. Chem. C 113 20127
[21] Laoire C O, Mukerjee S and Abraham K M 2010 J. Phys. Chem. C 114 9178
[22] Allen C J, Hwang J, Kautz R, Mukerjee S, Plichta E J, Hendrickson M A and Abraham K 2012 J. Phys. Chem. C 116 20755
[23] Trahan M J, Mukerjee S, Plichta E J, Hendrickson M A and Abraham K M 2013 J. Electrochem. Soc. 160 A259
[24] Peng Z, Freunberger S A, Hardwick L J, Chen Y, Giordani, V, Bardé F, Novák P, Graham D, Tarascon J M and Bruce P G 2011 Angew. Chem. Int. Ed. 123 6475
[25] Johnson L, Li C, Liu Z, Chen Y, Freunberger S A, Ashok P C, Praveen B B, Dholakia K, Tarascon J M and Bruce P G 2014 Nat. Chem. 6 1091
[26] Frith J T, Russell A E, Garcia-Araez N and Owen J R 2014 Electrochem. Commun. 46 33
[27] McCloskey B D, Scheffler R, Speidel A, Girishkumar G and Luntz A C 2012 J. Phys. Chem. C 116 23897
[28] Abraham K M 2015 J. Electrochem. Soc. 162 A3021
[29] Aetukuri N B, McCloskey B D, Garcia J M, Krupp L E, Viswanathan V and Luntz A C 2015 Nat. Chem. 7 50
[30] Gallant B M, Kwabi D G, Mitchell R R, Zhou J, Thompson C V and Shao-Horn Y 2013 Energy Environ. Sci. 6 2518
[31] Lu Y C and Shao-Horn Y 2012 J. Phys. Chem. Lett. 4 93
[32] Viswanathan V, Norskov J K, Speidel A, Scheffler R, Gowda S and Luntz A C 2013 J. Phys. Chem. Lett. 4 556
[33] Viswanathan V, Thygesen K S, Hummelshoj J S, Norskov J K, Girishkumar G, McCloskey B D and Luntz A C 2011 J. Chem. Phys. 135 214704
[34] Mitchell R R, Gallant B M, Shao-Horn Y and Thompson C V 2013 J. Phys. Chem. Lett. 4 1060
[35] Zhong L, Mitchell R R, Liu Y, Gallant B M, Thompson C V, Huang J Y, Mao C X and Shao-Horn Y 2013 Nano Lett. 13 2209
[36] Ogasawara T, Débart A, Holzapfel M, Novak P and Bruce P G 2006 J. Am. Chem. Soc. 128 1390
[37] Yang J, Zha D, Wang H H, Lau, K C, Schlueter J A, Du P, Myers D J, Sun, Y K, Curtiss, L A and Amine K 2013 Phys. Chem. Chem. Phys. 15 3764
[38] Yang X and Xia Y 2010 J. Solid State Electrochem. 14 109
[39] Hummelshoj J S, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen K S, Luntz A C, Jacobsen KWand Norskov J K 2010 J. Chem. Phys. 132 071101
[40] McCloskey B D, Scheffler R, Speidel A, Bethune D S, Shelby R M and Luntz A C 2011 J. Am. Chem. Soc. 133 18038
[41] Sun B, Wang B, Su D, Xiao L, Ahn H and Wang G 2012 Carbon 50 727
[42] Hojberg J, McCloskey B D, Hjelm J, Vegge T, Johansen K, Norby P and Luntz A C 2015 ACS Appl. Mater. Inter. 7 4039
[43] Herrera S E, Tesio A Y, Clarenc R and Calvo E J 2014 Phys. Chem. Chem. Phys. 16 9925
[44] Mitchell R R, Gallant B M, Thompson C V and Shao-Horn Y 2011 Energy Environ. Sci. 4 2952
[45] Feng N, He P and Zhou H 2015 ChemSusChem 8 600
[46] Yadegari H, Li Y, Banis M N, Li X, Wang B, Sun Q and Sun X 2014 Energy Environ. Sci. 7 3747
[47] Harding, J R, Lu Y C, Tsukada Y and Shao Horn Y 2012 Phys. Chem. Chem. Phys. 14 0540
[48] Zheng H, Xiao D, Li X, Liu Y, Wu Y, Wang J, Jiang K, Chen C, Gu L, Wei X, Hu Y, Chen Q and Li H 2014 Nano Lett. 14 4245
[49] Wen R, Hong M and Byon H R 2013 J. Am. Chem. Soc. 135 10870
[50] Varley, J B, Viswanathan V, Norskov J K and Luntz A C 2014 Energy Environ. Sci. 7 720
[51] Radin M D and Siegel D J 2013 Energy Environ. Sci. 6 2370
[52] Geng W T, He B L and Ohno T 2013 J. Phys. Chem. C 117 25222
[53] Tian F, Radin M D and Siegel D J. 2014 Chem. Mater. 26 2952
[54] Luntz A C, Viswanathan V, Voss J, Varley J B, Norskov J K, Scheffler R and Speidel A 2013 J. Phys. Chem. Lett. 4 3494
[55] Ong S P, Mo Y and Ceder G 2012 Phys. Rev. B 85 081105
[56] Kang J, Jung Y S, Wie S and Dillon A C 2012 Phys. Rev. B 85 035210
[57] Radin M D, Rodriguez J F, Tian F and Siegel D J 2012 J. Am. Chem. Soc. 134 1093
[58] Zhao Y, Ban C, Kang J, Santhanagopalan S, Kim G H, Wei S H and Dillon A C 2012 Appl. Phys. Lett. 101 023903
[59] Lu Y C, Gallant B M, Kwabi D G, Harding J R, Mitchell R R, Whittingham M S and Shao Horn Y 2013 Energy Environ. Sci. 6 750
[1] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[2] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[3] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[4] The theory of helix-based RNA folding kinetics and its application
Sha Gong(龚沙), Taigang Liu(刘太刚), Yanli Wang(王晏莉), and Wenbing Zhang(张文炳)†. Chin. Phys. B, 2020, 29(10): 108703.
[5] Theoretical estimation of sonochemical yield in bubble cluster in acoustic field
Zhuang-Zhi Shen(沈壮志). Chin. Phys. B, 2020, 29(1): 014304.
[6] Study of glass transition kinetics of As2S3 and As2Se3 by ultrafast differential scanning calorimetry
Fan Zhang(张凡), Yimin Chen(陈益敏), Rongping Wang(王荣平), Xiang Shen(沈祥), Junqiang Wang(王军强), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2019, 28(4): 047802.
[7] Effects of intrinsic and extrinsic noises on transposons kinetics
Alssadig A M Yousif, Lulu Lu(鹿露露), Mengyan Ge(葛梦炎), Ying Xu(徐莹), Ya Jia(贾亚). Chin. Phys. B, 2018, 27(3): 030501.
[8] Helicase activity and substrate specificity of RecQ5β
Jing You(尤菁), Ya-Nan Xu(徐雅楠), Hui Li(李辉), Xi-Ming Lu(吕袭明), Wei Li(李伟), Peng-Ye Wang(王鹏业), Shuo-Xing Dou(窦硕星), Xu-Guang Xi(奚绪光). Chin. Phys. B, 2017, 26(6): 068701.
[9] Crystallization behaviors of ultrathin Al-doped HfO2 amorphous films grown by atomic layer deposition
Xue-Li Ma(马雪丽), Hong Yang(杨红), Jin-Juan Xiang(项金娟), Xiao-Lei Wang(王晓磊), Wen-Wu Wang(王文武), Jian-Qi Zhang(张建齐), Hua-Xiang Yin(殷华湘), Hui-Long Zhu(朱慧珑), Chao Zhao(赵 超). Chin. Phys. B, 2017, 26(2): 027701.
[10] Molecular dynamic simulation of the thermodynamic and kinetic properties of nucleotide base pair
Yu-Jie Wang(王宇杰), Zhen Wang(王珍), Yan-Li Wang(王晏莉), Wen-Bing Zhang(张文炳). Chin. Phys. B, 2017, 26(12): 128705.
[11] Effect of plasma on combustion characteristics of boron
Peng Zhang(张鹏), Wenli Zhong(钟文丽), Qian Li(李倩), Bo Yang(杨波), Zhongguang Li(李忠光), Xiao Luan(栾骁). Chin. Phys. B, 2017, 26(11): 110501.
[12] A growth kinetics model of rate decomposition for Si1-xGex alloy based on dimer theory
Dai Xian-Ying (戴显英), Ji Yao (吉瑶), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(1): 015101.
[13] Automatic microcircuit formation based on gold-coated SU-8 microrods via dielectrophoresis
Ren Yu-Kun (任玉坤), Tao Ye (陶冶), Hou Li-Kai (侯立凯), Jiang Hong-Yuan (姜洪源). Chin. Phys. B, 2013, 22(8): 087701.
[14] Thermodynamic and kinetic study on interfacial reaction and diamond graphitization of Cu–Fe-based diamond composite
Li Wen-Sheng (李文生), Zhang Jie (张杰), Dong Hong-Feng (董洪锋), Chu Ke (褚克), Wang Shun-Cai (王顺才), Liu Yi (刘毅), Li Ya-Ming (李亚明). Chin. Phys. B, 2013, 22(1): 018102.
[15] Dynamic analysis of holographic gratings in amulti-wavelength visible light sensitive photopolymer
Chen Ke(陈珂), Cheng Jian-Qun(成建群), Wang Yan(王艳), and Huang Ming-Ju(黄明举). Chin. Phys. B, 2010, 19(1): 014204.
No Suggested Reading articles found!