Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 018102    DOI: 10.1088/1674-1056/22/1/018102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Thermodynamic and kinetic study on interfacial reaction and diamond graphitization of Cu–Fe-based diamond composite

Li Wen-Sheng (李文生)a, Zhang Jie (张杰)a, Dong Hong-Feng (董洪锋)a, Chu Ke (褚克)a, Wang Shun-Cai (王顺才)b, Liu Yi (刘毅)a, Li Ya-Ming (李亚明)a
a State Key Lab of Advanced Non-Ferrous Materials, Lanzhou University of Technology, Lanzhou 730050, China;
b National Centre for Advanced Tribology, Engineering Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
Abstract  Cu-Fe based diamond composites used for saw-blade segments are directly fabricated by vacuum and pressure-assisted sintering. The carbide forming elements Cr and Ti are added to improve interfacial bonding between diamond and Cu-Fe matrix. The interfacial reactions between diamond/graphite and Cr or Ti, and diamond graphitization are investigated by thermodynamics/kinetics analyses and experimental methods. The results show that interfacial reactions and graphitization of diamond can automatically proceed thermodynamically. The Cr3C2, Cr7C3, Cr23C6, and TiC are formed at the interfaces of composites by reactions between diamond and Cr or Ti; diamond graphitization does not occur because of the kinetic difficulty at 1093 K under the pressure of 13 MPa.
Keywords:  thermodynamics      kinetics      diamond composites      diamond graphitization  
Received:  11 May 2012      Revised:  18 June 2012      Accepted manuscript online: 
PACS:  81.05.uj (Diamond/nanocarbon composites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51165021) and the Science Fund for Distinguished Young Scholars of Gansu Province, China (Grant No. 111RJDA0103).
Corresponding Authors:  Li Wen-Sheng     E-mail:  wensheng-li@sohu.com

Cite this article: 

Li Wen-Sheng (李文生), Zhang Jie (张杰), Dong Hong-Feng (董洪锋), Chu Ke (褚克), Wang Shun-Cai (王顺才), Liu Yi (刘毅), Li Ya-Ming (李亚明) Thermodynamic and kinetic study on interfacial reaction and diamond graphitization of Cu–Fe-based diamond composite 2013 Chin. Phys. B 22 018102

[1] Field J E 1992 The Properties of Natural and Synthetic Diamond (London: Elsevier Academic Press)
[2] Zhou L, Jia X P, Ma H A, Zheng Y J and Li Y T 2008 Chin. Phy. Soc. 17 4665
[3] Zhou L, Jia X P, Ma H A, Zheng Y J and Li Y T 2009 Chin. Phy. Soc. 18 333
[4] Li W S, Zhang J, Wang S C, Dong H F, Li Y M and Liu Y 2012 Rare Metals 31 81
[5] Chu K, Jia C, Liang X and Chen H 2010 Rare Metals 29 86
[6] Chu K, Jia C, Liang X and Chen H 2010 Int. J. Miner. Metall. Mater. 17 234
[7] Shao W Z, Ivanov V V, Zhen L, Cui Y S and Wang Y 2003 Mater. Lett. 58 146
[8] Hsieh Y Z, Chen J F and Lin S T 2000 J. Mater. Sci. 35 5383
[9] Chu K, Liu Z F, Jia C C, Chen H, Liang X B, Gao W J, Tian W H and Guo H 2010 J. Alloys Compd. 490 453
[10] Moriguchi H, Tsuduki K, Ikegauya A, Miyamoto Y and Morisada Y 2007 Int. J. Refract. Met. Hard Mater. 25 237
[11] Wang C Y, Zhou Y M, Zhang F L and Xu Z C 2009 J. Alloys Compd. 476 884
[12] Mortimer R G 2008 Physical Chemistry (3rd edn.) (London: Elsevier Academic Press) p. 179
[13] Ye D L and Hu J H 2002 Practical Thermodynamic Data Handbook of Inorganic Substances (Beijing: Metallurgy Industry Press) (in Chinese)
[14] Li L 2008 Valence Electron Theory and Thermodynamics Analysis of Diamond Growth Mechanism at HPHT (PhD. dissertation) (Jinan: Shandong University) (in Chinese)
[15] Sung J 2000 J. Mater. Sci. 35 6041
[16] Kollman P 1993 Chem. Rev. 93 2395
[17] Tanaka H, Shimada S, Ikawa N and Yoshinaga M 2001 Key Eng. Mater. 196 69
[18] Qin J M, Zhang Y, Cao J M and Tian L F 2011 Acta Phys. Sin. 60 058102 (in Chinese)
[19] Oliveira L, Bobrovnitchii G S and Filgueira M 2007 Int. J. Refract. Met. Hard Mater. 25 328
[1] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[2] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[3] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[4] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[5] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[6] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[7] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[8] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[9] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[10] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[11] Energy cooperation in quantum thermoelectric systems withmultiple electric currents
Yefeng Liu(刘叶锋), Jincheng Lu(陆金成), Rongqian Wang(王荣倩), Chen Wang(王晨), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2020, 29(4): 040504.
[12] The theory of helix-based RNA folding kinetics and its application
Sha Gong(龚沙), Taigang Liu(刘太刚), Yanli Wang(王晏莉), and Wenbing Zhang(张文炳)†. Chin. Phys. B, 2020, 29(10): 108703.
[13] Theoretical estimation of sonochemical yield in bubble cluster in acoustic field
Zhuang-Zhi Shen(沈壮志). Chin. Phys. B, 2020, 29(1): 014304.
[14] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[15] Study of glass transition kinetics of As2S3 and As2Se3 by ultrafast differential scanning calorimetry
Fan Zhang(张凡), Yimin Chen(陈益敏), Rongping Wang(王荣平), Xiang Shen(沈祥), Junqiang Wang(王军强), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2019, 28(4): 047802.
No Suggested Reading articles found!