Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014304    DOI: 10.1088/1674-1056/ab6108
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical estimation of sonochemical yield in bubble cluster in acoustic field

Zhuang-Zhi Shen(沈壮志)
School of Physics&Information Technology, Shaanxi Normal University, Shaanxi Key Laboratory of Ultrasonics, Xi'an 710119, China
Abstract  In order to learn more about the physical phenomena occurring in cloud cavitation, the nonlinear dynamics of a spherical cluster of cavitation bubbles and cavitation bubbles in cluster in an acoustic field excited by a square pressure wave are numerically investigated by considering viscosity, surface tension, and the weak compressibility of the liquid. The theoretical prediction of the yield of oxidants produced inside bubbles during the strong collapse stage of cavitation bubbles is also investigated. The effects of acoustic frequency, acoustic pressure amplitude, and the number of bubbles in cluster on bubble temperature and the quantity of oxidants produced inside bubbles are analyzed. The results show that the change of acoustic frequency, acoustic pressure amplitude, and the number of bubbles in cluster have an effect not only on temperature and the quantity of oxidants inside the bubble, but also on the degradation types of pollutants, which provides a guidance in improving the sonochemical degradation of organic pollutants.
Keywords:  bubble cluster models      bubble cluster dynamics      chemical kinetics      bubble temperature      strong oxidants      acoustic cavitation  
Received:  07 May 2019      Revised:  10 June 2019      Accepted manuscript online: 
PACS:  43.25.+y (Nonlinear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  44.20.+b (Boundary layer heat flow)  
  82.20.-w (Chemical kinetics and dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674207).
Corresponding Authors:  Zhuang-Zhi Shen     E-mail:  szz6@163.com

Cite this article: 

Zhuang-Zhi Shen(沈壮志) Theoretical estimation of sonochemical yield in bubble cluster in acoustic field 2020 Chin. Phys. B 29 014304

[1] Sivasankar T and Moholkar V S 2008 Chemosphere 72 1795
[2] Malani R S, Khanna S and Moholkar V S 2013 J. Hazard. Mater. 256-257 90
[3] Sasi S, Rayaroth M P, Devadasan D, Aravind U K and Aravindakumar C T 2015 J. Hazard. Mater. 300 202
[4] Gogate P R, Pandit A B 2004 Adv. Environ. Res. 8 501
[5] Henglein A and Kormann C 1985 Int. J. Radiat. Bio. 48 251
[6] Hua L, Hochemer R H and Hoffmann M R 1995 J. Phys. Chem. 99 2335
[7] Gutierrez M and Henglein A 1988 J. Phys. Chem. 92 2978
[8] Suzuki Y, Maezawa A and Uchida S 1999 Chem. Eng. Technol. 22 507
[9] Okuno H, Yim B, Mizukoshi Y, Nagata Y andMaeda Y 2000 Ultrason. Sonochem. 7 261
[10] Ku Y, Chen K Y and Lee K C 1997 Water Res. 31 929
[11] Jiang Y, Pétrier C and David Waite C 2002 Ultrason. Sonochem. 9 163
[12] Visscher A D, Langenhove H V and Eenoo P V 1997 Ultrason. Sonochem. 4 145
[13] Zhao B B and Wang L 2000 Chem. Eng. 6 21
[14] Drijvers D, Baets R D, Visscher A D and Langenhove H V 1996 Ultrason. Sonochem. 3 S83
[15] Entezari M H, Kruus P and Otson R 1997 Ultrason. Sonochem. 4 49
[16] Petrier C and Francony A 1997 Ultrason. Sonochem. 4 295
[17] Cum G, Galli G, Gallo R and Spadaro A 1992 Ultrasonics 30 267
[18] Bhatnagar A and Cheung H M 1994 Environ. Sci. Technol. 28 1481
[19] Price G J, Matthias P and Leoz E J 1994 Process Saf. Environ. 72B 27
[20] Terese M O and Philippe F B 1994 Water Res. 28 1383
[21] Chen W C 2014 Acoustic Cavitation Physics (Beijing: Science Press) p. 269
[22] Sun J, Shen Z Z andMo R Y 2019 Chin. Phys. B 28 014301
[23] Gogate P R, Sutkar V S and Pandit A B 2011 Chem. Eng. J. 116 1066
[24] Gogate P R, Mujumdar S and Pandit A B 2003 Adv. Env. Res. 7 283
[25] Hodnett M, Choi M J and Zeqiri B 2007 Ultrason. Sonochem. 14 29
[26] Hua I, Hochemer R H and Hoffmann M R 1995 Envrion. Sci. Technol. 29 2790
[27] Berlan J and Mason T J 1992 Ultrasonics 30 203
[28] Gogate P R 2003 Ultrason. Sonochem. 10 325
[29] Kumar A, Gogate P R and Pandit A B 2007 Ultrason. Sonochem. 14 538
[30] Yasui K 1997 J. Phys. Soc. Jpn. 66 2911
[31] Kamath V and Prosperetti A 1993 J. Acoust. Soc. Am. 94 248
[32] Yasui K, Toru T, Sivakumar M and Iida Y 2005 J. Chem. Phys. 122 224706
[33] Merouani S, Hamdaoui O, Rezgui Y and Guemini M 2014 Ultrason. Sonochem. 21 53
[34] Stricker L and Lohse D 2014 Ultrason. Sonochem. 21 336
[35] Kerboua K and Hamdaoui O 2018 Ultrason. Sonochem. 41 449
[36] Sivasankar T, Vijayan and S M 2008 AIChE J. 54 2206
[37] Cuiling G and Douglas P H 1998 J. Acoust. Soc. Am. 104 2675
[38] Brian D S and Andrew J S 2000 Proc. R. Soc. Lond. A 456 1685
[39] Toegel R, Gompf B and Pecha R 2000 Phys. Rev. Lett. 85 3165
[40] Behnia S, Zahir H and Yahyavi M 2013 Nonlinear Dyn. 72 561
[41] Chong K J Y, Quek C Y, Dzaharudin F and Ooi A 2010 J. Sound Vib. 329 687
[42] Wang Y C and Christopher E B 1999 J. Fluid Eng. 121 872
[43] Yasui K, Iida Y, Tuziuti T and Kozuka T 2008 Phys. Rev. E 77 016609
[44] Nigmatulin R I, Sh I, Vakhitova N K and Sh E 2000 AIP Conf. Proc. 524 455
[45] Sh E and Sh I 2005 Acoust. Phys. 51 705
[46] Tervo J T, Mettin R and Lauterborn W 2006 Acta Acust. United Ac. 92 178
[47] Nasibullaeva E S and Akhatov I S 2013 J. Acoust. Soc. Am. 133 3727
[48] Yasui K 1996 A new formulation of bubble dynamics for sonoluminescence, National Institute of Advanced Industrial Science and Technology, Japan
[49] Sivasankar T and Moholkar V S 2009 Chem. Eng. J. 149 57
[50] Sivasankar T and Moholkar V S 2009 Chem. Eng. J. 149 57
[51] Yasui K, Tuziuti T, Iida Y and Mitome H 2003 J. Chem. Phys. 119 346
[52] Suslick K S, Hammerton D A and Cline R E Jr 1986 J. Am. Chem. Soc. 108 5641
[53] Shemer H and Narkis N 2005 Ultrason. Sonochem. 12 495
[54] Findik S, Gunduz G and Gunduz E 2006 Ultrason. Sonochem. 13 203
[55] Shen Z Z and Wu S J 2012 Acta Phys. Sin. 61 244301 (in Chinese)
[1] Impact of cavitation on lesion formation induced by high intensity focused ultrasound
Pengfei Fan(范鹏飞), Jie Yu(于洁), Xin Yang(杨鑫), Juan Tu(屠娟), Xiasheng Guo(郭霞生), Pintong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2017, 26(5): 054301.
[2] Study of acoustic bubble cluster dynamics using a lattice Boltzmann model
Mahdi Daemi, Mohammad Taeibi-Rahni, Hamidreza Massah. Chin. Phys. B, 2015, 24(2): 024302.
[3] Correlation between microbubble-induced acoustic cavitation and hemolysis in vitro
Zhang Chun-Bing(张春兵), Liu Zheng(刘政), Guo Xia-sheng(郭霞生), and Zhang Dong(章东). Chin. Phys. B, 2011, 20(2): 024301.
No Suggested Reading articles found!