Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 015101    DOI: 10.1088/1674-1056/23/1/015101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A growth kinetics model of rate decomposition for Si1-xGex alloy based on dimer theory

Dai Xian-Ying (戴显英), Ji Yao (吉瑶), Hao Yue (郝跃)
School of Microelectronics, Xidian University, Xi’an 710071, China
Abstract  According to the dimer theory on semiconductor surface and chemical vapor deposition(CVD) growth characteristics of Si1-xGex, two mechanisms of rate decomposition and discrete flow density are proposed. Based on these two mechanisms, the Grove theory and Fick’s first law, a CVD growth kinetics model of Si1-xGex alloy is established. In order to make the model more accurate, two growth control mechanisms of vapor transport and surface reaction are taken into account. The paper also considers the influence of the dimer structure on the growth rate. The results show that the model calculated value is consistent with the experimental values at different temperatures.
Keywords:  dimer theory      rate decomposition      discrete flow density mechanisms      growth kinetics  
Received:  25 March 2013      Revised:  05 June 2013      Accepted manuscript online: 
PACS:  51.10.+y (Kinetic and transport theory of gases)  
  66.30.je (Diffusion of gases)  
  68.35.bg (Semiconductors)  
  68.35.Ja (Surface and interface dynamics and vibrations)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No. 6139801-1).
Corresponding Authors:  Ji Yao     E-mail:  xiaojiaodream@aliyun.com

Cite this article: 

Dai Xian-Ying (戴显英), Ji Yao (吉瑶), Hao Yue (郝跃) A growth kinetics model of rate decomposition for Si1-xGex alloy based on dimer theory 2014 Chin. Phys. B 23 015101

[1] Harame D L, Cpmofrt J H, Cressler J D, Crabbe E F, Sun J Y, Meyerson B S and Tice T 1995 IEEE Trans. Electron Dev. 42 455
[2] Oh J, Lee S H, Min K S, Huang J, Min B G, Sassman B, Jeon K, Loh W Y, Barnett J, Ok I, Kang C Y, Smith C, Ko D H, Kirsch P D and Jammy R 2010 VLSI Technol. (VLSIT), June 15–17, 2010, Austin, United States, p. 39
[3] Al-Sadi M, Fregonese S, Maneux C and Zimmer T 2010 Bipolar/BiCMOS Circuit and Technology Meeting, October 4–6, 2010, Austin, United States, p. 216
[4] Hartmann J M 2007 J. Cryst. Growth 305 113
[5] Hartmann J M, Burdin M, Rolland G and Billon T 2006 J. Cryst. Growth 294 288
[6] Dai X Y, Jin G Q and Dong J Q 2011 Acta Phys. Sin. 06 5101 (in Chinese)
[7] Robbins D J, Glasper L, Cullis A G and Leong W Y 1991 J. Appl. Phys. 69 3729
[8] Kamins T I and Meyer D J 2001 Appl. Phys. Lett. 59 178
[9] Fu C C, Weissmann M and Saul A 2001 Surf. Sci. 494 119
[10] Healy S B, Filippi C, Kratzer P, Penev E and Scheffler M 2001 Phys. Rev. Lett. 87 016105
[11] Mui C K L 2003 Growth and Functionalization of Group-IV Semiconductor Surfaces (Ph.D. dissertation) (Stanford: Stanford University Press) pp. 169–173
[12] Liu B and Lu R 2008 Physical Chemistry 1st edn. (Wuhan: Huazhong University Press) pp. 134–136 (in Chinese)
[13] Zhang Y, Cheng L, Cai K H, Chen Y H, Chen S Y, Lai H K and Kang J Y 2009 J. Appl. Phys. 106 063508
[14] Wang Y Y, Guan X D and Ma J R 1989 Fundamental of Integrated Circuit Process (1st edn.) (Beijing: Peking University Press) p. 256 (in Chinese)
[1] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[2] Direct simulation Monte Carlo study of metal evaporation with collimator in e-beam physical vapor deposition
Xiaoyong Lu(卢肖勇), Junjie Chai(柴俊杰). Chin. Phys. B, 2019, 28(7): 074702.
[3] Numerical simulation of metal evaporation based on the kinetic model equation and the direct simulation Monte Carlo method
Xiaoyong Lu(卢肖勇), Xiaozhang Zhang(张小章), Zhizhong Zhang(张志忠). Chin. Phys. B, 2018, 27(12): 124702.
[4] The anisotropy of free path in a vibro-fluidized granular gas
Yifeng Mei(梅一枫), Yanpei Chen(陈延佩), Wei Wang(王维), Meiying Hou(厚美瑛). Chin. Phys. B, 2016, 25(8): 084501.
[5] Modified 2CLJDQP model and the second virial coefficients for linear molecules
Zhang Ying (张颖), Wang Sheng (王升), He Mao-Gang (何茂刚). Chin. Phys. B, 2014, 23(12): 125101.
[6] A steady solution of the gasar eutectic growth in directional solidification
Li Xiang-Ming (李向明), Li Wen-Qiong (李文琼), Jin Qing-Lin (金青林), Zhou Rong (周荣). Chin. Phys. B, 2013, 22(7): 078101.
[7] Transport properties of a binary mixture of CO2–N2 from the pair potential energy functions based on a semi-empirical inversion method
Song Bo(宋渤), Wang Xiao-Po(王晓坡), Yang Fu-Xin(杨富鑫), and Liu Zhi-Gang(刘志刚) . Chin. Phys. B, 2012, 21(4): 045101.
[8] Entropy and weak solutions in the lattice Bhatnagar–Gross–Krook model
Ran Zheng(冉政) and Xu Yu-Peng(许宇鹏) . Chin. Phys. B, 2011, 20(11): 114702.
[9] Gas flow characteristics in straight silicon microchannels
Ding Ying-Tao (丁英涛), Yao Zhao-Hui (姚朝晖), Shen Meng-Yu (沈孟育). Chin. Phys. B, 2002, 11(9): 869-875.
No Suggested Reading articles found!