Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 068701    DOI: 10.1088/1674-1056/26/6/068701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Helicase activity and substrate specificity of RecQ5β

Jing You(尤菁)1,2, Ya-Nan Xu(徐雅楠)3, Hui Li(李辉)1,2, Xi-Ming Lu(吕袭明)1,2, Wei Li(李伟)1,2, Peng-Ye Wang(王鹏业)1,2, Shuo-Xing Dou(窦硕星)1,2, Xu-Guang Xi(奚绪光)4,5
1 Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China;
4 College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China;
5 LBPA, IDA, ENS Cachan, CNRS, Universite Paris-Saclay, Cachan F-94235, France
Abstract  

RecQ5β is an essential DNA helicase in humans, playing important roles in DNA replication, repair, recombination and transcription. The unwinding activity and substrate specificity of RecQ5β is still elusive. Here, we used stopped-flow kinetic method to measure the unwinding and dissociation kinetics of RecQ5β with several kinds of DNA substrates, and found that RecQ5β could well unwind ss/dsDNA, forked DNA and Holiday junction, but was compromised in unwinding blunt DNA and G-quadruplex. Rec5β has the preferred unwinding specificity for certain DNA substrates containing the junction point, which may improve the binding affinity and unwinding activity of RecQ5β. Moreover, from a comparison with the truncated RecQ5β1-467, we discovered that the C-terminal domain might strongly influence the unwinding activity and binding affinity of RecQ5β. These results may shed light on the physiological functions and working mechanisms of RecQ5β helicase.

Keywords:  helicase      RecQ5β      DNA      substrate specificity      unwinding kinetics  
Received:  11 March 2017      Revised:  10 April 2017      Accepted manuscript online: 
PACS:  87.14.ej (Enzymes)  
  87.14.gk (DNA)  
  87.15.R- (Reactions and kinetics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11674383, 11474346, and 11274374), the National Basic Research Program of China (Grant No. 2013CB837200), and the National Key Research and Development Program of China (Grant No. 2016YFA0301500).

Corresponding Authors:  Hui Li, Shuo-Xing Dou     E-mail:  huili@iphy.ac.cn;sxdou@iphy.ac.cn

Cite this article: 

Jing You(尤菁), Ya-Nan Xu(徐雅楠), Hui Li(李辉), Xi-Ming Lu(吕袭明), Wei Li(李伟), Peng-Ye Wang(王鹏业), Shuo-Xing Dou(窦硕星), Xu-Guang Xi(奚绪光) Helicase activity and substrate specificity of RecQ5β 2017 Chin. Phys. B 26 068701

[1] Lohman T M and Bjornson K P 1996 Ann. Rev. Biochem. 65 169
[2] Soultanas P and Wigley D B 2000 Curr. Opin. Struct. Biol. 10 124
[3] Caruthers J M and Mckay D B 2002 Curr. Opin. Struct. Biol. 12 123
[4] Umezu K, Nakayama K and Nakayama H 1990 Proc. Natl. Acad. Sci. 87 5363
[5] Lohman T M, Tomko E J and Wu C G 2008 Nat. Rev. Mol. Cell Bio. 9 391
[6] Masai H 2011 J. Biochem. 149 629
[7] Mankouri H W and Hickson I D 2004 Biochem. Soc. T. 32 957
[8] Hanada K, Ukita T, Kohno Y, Saito K, Kato J and Ikeda H 1997 Proc. Natl. Acad. Sci. 94 3860
[9] German J, Schonberg S, Louie E and Chaganti R S 1977 Am. J. Hum. Genet. 29 248
[10] Speina E, Dawut L, Hedayati M, Wang Z, May A, Schwendener S, Janscak P, Croteau D L and Bohr V A 2010 Nucleic Acids Res. 38 2904
[11] Seki M 1994 Nucleic Acids Res. 22 4566
[12] Sharma S, Stumpo D J, Balajee A S, Bock C B, Lansdorp P M, Brosh R M Jr and Blackshear P J 2007 Mol. Cell. Biol. 27 1784
[13] Croteau D L, Popuri V, Opresko P L and Bohr V A 2014 Ann. Rev. Biochem. 83 519
[14] Karow J K, Wu L and Hickson I D 2000 Curr. Opin. Genet. Dev. 10 32
[15] Wang W, Seki M, Narita Y, Nakagawa T, Yoshimura A, Otsuki M, Kawabe Y, Tada S, Yagi H and Ishii Y 2003 Mol. Cell. Biol. 23 3527
[16] Hu Y, Lu X, Barnes E, Yan M, Lou H and Luo G 2005 Mol. Cell. Biol. 25 3431
[17] Paliwal S, Kanagaraj R, Sturzenegger A, Burdova K and Janscak P 2014 Nucleic Acids Res. 42 2380
[18] Shimamoto A, Nishikawa K, Kitao S and Furuichi Y 2000 Nucleic Acids Res. 28 1647
[19] Popuri V, Tadokoro T, Croteau D L and Bohr V A 2013 Crit. Rev. Biochem. Mol. Biol. 48 289
[20] Sekelsky J J, Brodsky M H, Rubin G M and Hawley R S 1999 Nucleic Acids Res. 27 3762
[21] Ding X Y, Xu Y N, Li W, Wang P Y, Xi X G and Dou S X 2012 Chin. Sci. Bull. 57 1280
[22] Kanagaraj R, Saydam N, Garcia P L, Zheng L and Janscak P 2006 Nucleic Acids Res. 34 5217
[23] Garcia P L, Liu Y, Jiricny J, West S C and Janscak P 2004 EMBO J. 23 2882
[24] Ren H, Dou S X, Zhang X D, Wang P Y, Kanagaraj R, Liu J L, Janscak P, Hu J S and Xi X G 2008 Biochem. J. 412 425
[25] Mohaghegh P 2001 Nucleic Acids Res. 29 2843
[26] Ozsoy A Z, Ragonese H M and Matson S W 2003 Nucleic Acids Res. 31 1554
[27] Zhang X D, Dou S X, Xie P, Wang P Y and Xi X G 2005 Acta Bioch. Bioph. Sin. 37 593
[28] Zhang X D, Dou S X, Xie P, Hu J S, Wang P Y and Xi X G 2006 J. Biol. Chem. 281 12655
[29] Yang Y, Dou S X, Ren H, Wang P Y, Zhang X D, Qian M, Pan B Y and Xi X G 2008 Nucleic Acids Res. 36 1976
[30] Yang Y, Dou S X, Xu Y N, Bazeille N, Wang P Y, Rigolet P, Xu H Q and Xi X G 2010 Biochemistry 49 656
[31] Ding X Y, Xu Y N, Wang P Y, Dou S X and Xi X G 2012 Afr. J. Biotechnol. 11 6795
[32] Xu Y N, Bazeille N, Ding X Y, Lu X M, Wang P Y, Bugnard E, Grondin V, Dou S X and Xi X G 2012 Nucleic Acids Res. 40 9802
[33] Xu H Q, Zhang A H, Auclair C and Xi X G 2003 Nucleic Acids Res. 31 e70
[34] Machwe A, Xiao L, Groden J, Matson S W and Orren D K 2005 J. Biol. Chem. 280 23397
[35] Valenti A, Perugino G, Varriale A, D'Auria S, Rossi M and Ciaramella M 2010 J. Biol. Chem. 285 36532
[36] Paeschke K, McDonald K R and Zakian V A 2010 FEBS Lett. 584 3760
[37] Gray R D and Chaires J B 2008 Nucleic Acids Res. 36 4191
[38] Gray R D, Trent J O and Chaires J B 2014 J. Mol. Biol. 426 1629
[39] Budhathoki J B, Maleki P, Roy W A, Janscak P, Yodh J G and Balci H 2016 Biophys. J. 110 2585
[1] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[2] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[5] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[6] Oxidation degree dependent adsorption of ssDNA onto graphene-based surface
Huishu Ma(马慧姝), Jige Chen(陈济舸), Haiping Fang(方海平), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2021, 30(10): 106806.
[7] Diffusion of nucleotide excision repair protein XPA along DNA by coarse-grained molecular simulations
Weiwei Zhang(张伟伟) and Jian Zhang(张建). Chin. Phys. B, 2021, 30(10): 108703.
[8] Effect of interaction between loop bases and ions on stability of G-quadruplex DNA
Han-Zhen Qiao(乔汉真), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松), and Cong-Min Ji(祭聪敏). Chin. Phys. B, 2021, 30(1): 018702.
[9] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[10] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[11] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[12] New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding
Xing-Yuan Wang(王兴元), Jun-Jian Zhang(张钧荐), Fu-Chen Zhang(张付臣), Guang-Hui Cao(曹光辉). Chin. Phys. B, 2019, 28(4): 040504.
[13] Interaction between human telomeric G-quadruplexes characterized by single molecule magnetic tweezers
Yi-Zhou Wang(王一舟), Xi-Miao Hou(侯锡苗), Hai-Peng Ju(车海鹏), Xue Xiao(肖雪), Xu-Guang Xi(奚绪光), Shuo-Xing Dou(窦硕星), Peng-Ye Wang(王鹏业), Wei Li(李伟). Chin. Phys. B, 2018, 27(6): 068701.
[14] Computational mechanistic investigation of radiation damage of adenine induced by hydroxyl radicals
Rongri Tan(谈荣日), Huixuan Liu(刘慧宣), Damao Xun(寻大毛), Wenjun Zong(宗文军). Chin. Phys. B, 2018, 27(2): 027102.
[15] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
No Suggested Reading articles found!