INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Helicase activity and substrate specificity of RecQ5β |
Jing You(尤菁)1,2, Ya-Nan Xu(徐雅楠)3, Hui Li(李辉)1,2, Xi-Ming Lu(吕袭明)1,2, Wei Li(李伟)1,2, Peng-Ye Wang(王鹏业)1,2, Shuo-Xing Dou(窦硕星)1,2, Xu-Guang Xi(奚绪光)4,5 |
1 Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China;
4 College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China;
5 LBPA, IDA, ENS Cachan, CNRS, Universite Paris-Saclay, Cachan F-94235, France |
|
|
Abstract RecQ5β is an essential DNA helicase in humans, playing important roles in DNA replication, repair, recombination and transcription. The unwinding activity and substrate specificity of RecQ5β is still elusive. Here, we used stopped-flow kinetic method to measure the unwinding and dissociation kinetics of RecQ5β with several kinds of DNA substrates, and found that RecQ5β could well unwind ss/dsDNA, forked DNA and Holiday junction, but was compromised in unwinding blunt DNA and G-quadruplex. Rec5β has the preferred unwinding specificity for certain DNA substrates containing the junction point, which may improve the binding affinity and unwinding activity of RecQ5β. Moreover, from a comparison with the truncated RecQ5β1-467, we discovered that the C-terminal domain might strongly influence the unwinding activity and binding affinity of RecQ5β. These results may shed light on the physiological functions and working mechanisms of RecQ5β helicase.
|
Received: 11 March 2017
Revised: 10 April 2017
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674383, 11474346, and 11274374), the National Basic Research Program of China (Grant No. 2013CB837200), and the National Key Research and Development Program of China (Grant No. 2016YFA0301500). |
Corresponding Authors:
Hui Li, Shuo-Xing Dou
E-mail: huili@iphy.ac.cn;sxdou@iphy.ac.cn
|
Cite this article:
Jing You(尤菁), Ya-Nan Xu(徐雅楠), Hui Li(李辉), Xi-Ming Lu(吕袭明), Wei Li(李伟), Peng-Ye Wang(王鹏业), Shuo-Xing Dou(窦硕星), Xu-Guang Xi(奚绪光) Helicase activity and substrate specificity of RecQ5β 2017 Chin. Phys. B 26 068701
|
[1] |
Lohman T M and Bjornson K P 1996 Ann. Rev. Biochem. 65 169
|
[2] |
Soultanas P and Wigley D B 2000 Curr. Opin. Struct. Biol. 10 124
|
[3] |
Caruthers J M and Mckay D B 2002 Curr. Opin. Struct. Biol. 12 123
|
[4] |
Umezu K, Nakayama K and Nakayama H 1990 Proc. Natl. Acad. Sci. 87 5363
|
[5] |
Lohman T M, Tomko E J and Wu C G 2008 Nat. Rev. Mol. Cell Bio. 9 391
|
[6] |
Masai H 2011 J. Biochem. 149 629
|
[7] |
Mankouri H W and Hickson I D 2004 Biochem. Soc. T. 32 957
|
[8] |
Hanada K, Ukita T, Kohno Y, Saito K, Kato J and Ikeda H 1997 Proc. Natl. Acad. Sci. 94 3860
|
[9] |
German J, Schonberg S, Louie E and Chaganti R S 1977 Am. J. Hum. Genet. 29 248
|
[10] |
Speina E, Dawut L, Hedayati M, Wang Z, May A, Schwendener S, Janscak P, Croteau D L and Bohr V A 2010 Nucleic Acids Res. 38 2904
|
[11] |
Seki M 1994 Nucleic Acids Res. 22 4566
|
[12] |
Sharma S, Stumpo D J, Balajee A S, Bock C B, Lansdorp P M, Brosh R M Jr and Blackshear P J 2007 Mol. Cell. Biol. 27 1784
|
[13] |
Croteau D L, Popuri V, Opresko P L and Bohr V A 2014 Ann. Rev. Biochem. 83 519
|
[14] |
Karow J K, Wu L and Hickson I D 2000 Curr. Opin. Genet. Dev. 10 32
|
[15] |
Wang W, Seki M, Narita Y, Nakagawa T, Yoshimura A, Otsuki M, Kawabe Y, Tada S, Yagi H and Ishii Y 2003 Mol. Cell. Biol. 23 3527
|
[16] |
Hu Y, Lu X, Barnes E, Yan M, Lou H and Luo G 2005 Mol. Cell. Biol. 25 3431
|
[17] |
Paliwal S, Kanagaraj R, Sturzenegger A, Burdova K and Janscak P 2014 Nucleic Acids Res. 42 2380
|
[18] |
Shimamoto A, Nishikawa K, Kitao S and Furuichi Y 2000 Nucleic Acids Res. 28 1647
|
[19] |
Popuri V, Tadokoro T, Croteau D L and Bohr V A 2013 Crit. Rev. Biochem. Mol. Biol. 48 289
|
[20] |
Sekelsky J J, Brodsky M H, Rubin G M and Hawley R S 1999 Nucleic Acids Res. 27 3762
|
[21] |
Ding X Y, Xu Y N, Li W, Wang P Y, Xi X G and Dou S X 2012 Chin. Sci. Bull. 57 1280
|
[22] |
Kanagaraj R, Saydam N, Garcia P L, Zheng L and Janscak P 2006 Nucleic Acids Res. 34 5217
|
[23] |
Garcia P L, Liu Y, Jiricny J, West S C and Janscak P 2004 EMBO J. 23 2882
|
[24] |
Ren H, Dou S X, Zhang X D, Wang P Y, Kanagaraj R, Liu J L, Janscak P, Hu J S and Xi X G 2008 Biochem. J. 412 425
|
[25] |
Mohaghegh P 2001 Nucleic Acids Res. 29 2843
|
[26] |
Ozsoy A Z, Ragonese H M and Matson S W 2003 Nucleic Acids Res. 31 1554
|
[27] |
Zhang X D, Dou S X, Xie P, Wang P Y and Xi X G 2005 Acta Bioch. Bioph. Sin. 37 593
|
[28] |
Zhang X D, Dou S X, Xie P, Hu J S, Wang P Y and Xi X G 2006 J. Biol. Chem. 281 12655
|
[29] |
Yang Y, Dou S X, Ren H, Wang P Y, Zhang X D, Qian M, Pan B Y and Xi X G 2008 Nucleic Acids Res. 36 1976
|
[30] |
Yang Y, Dou S X, Xu Y N, Bazeille N, Wang P Y, Rigolet P, Xu H Q and Xi X G 2010 Biochemistry 49 656
|
[31] |
Ding X Y, Xu Y N, Wang P Y, Dou S X and Xi X G 2012 Afr. J. Biotechnol. 11 6795
|
[32] |
Xu Y N, Bazeille N, Ding X Y, Lu X M, Wang P Y, Bugnard E, Grondin V, Dou S X and Xi X G 2012 Nucleic Acids Res. 40 9802
|
[33] |
Xu H Q, Zhang A H, Auclair C and Xi X G 2003 Nucleic Acids Res. 31 e70
|
[34] |
Machwe A, Xiao L, Groden J, Matson S W and Orren D K 2005 J. Biol. Chem. 280 23397
|
[35] |
Valenti A, Perugino G, Varriale A, D'Auria S, Rossi M and Ciaramella M 2010 J. Biol. Chem. 285 36532
|
[36] |
Paeschke K, McDonald K R and Zakian V A 2010 FEBS Lett. 584 3760
|
[37] |
Gray R D and Chaires J B 2008 Nucleic Acids Res. 36 4191
|
[38] |
Gray R D, Trent J O and Chaires J B 2014 J. Mol. Biol. 426 1629
|
[39] |
Budhathoki J B, Maleki P, Roy W A, Janscak P, Yodh J G and Balci H 2016 Biophys. J. 110 2585
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|