Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 118202    DOI: 10.1088/1674-1056/ac9221
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Understanding the battery safety improvement enabled by a quasi-solid-state battery design

Luyu Gan(甘露雨)1,2,3, Rusong Chen(陈汝颂)1,2,3, Xiqian Yu(禹习谦)1,2,3,†, and Hong Li(李泓)1,2,3,‡
1 Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Frontier Research Center on Clean Energy, Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China
Abstract  The rapid development of lithium-ion batteries (LIBs) is faced with challenge of its safety bottleneck, calling for design and chemistry innovations. Among the proposed strategies, the development of solid-state batteries (SSBs) seems the most promising solution, but to date no practical SSB has been in large-scale application. Practical safety performance of SSBs is also challenged. In this article, a brief review on LIB safety issue is made and the safety short boards of LIBs are emphasized. A systematic safety design in quasi-SSB chemistry is proposed to conquer the intrinsic safety weak points of LIBs and the effects are accessed based on existing studies. It is believed that a systematic and targeted solution in SSB chemistry design can effectively improve the battery safety, promoting larger-scale application of LIBs.
Keywords:  battery safety      thermodynamics      kinetics      solid-state batteries  
Received:  27 June 2022      Revised:  07 September 2022      Accepted manuscript online:  15 September 2022
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.60.-s (Chemical thermodynamics)  
  87.15.R- (Reactions and kinetics)  
  82.33.Pt (Solid state chemistry)  
Fund: roject supported by the National Key Research and Development Program of China (Grant No. 2021YFB2500300).
Corresponding Authors:  Xiqian Yu, Hong Li     E-mail:  xyu@iphy.ac.cn;hli@iphy.ac.cn

Cite this article: 

Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓) Understanding the battery safety improvement enabled by a quasi-solid-state battery design 2022 Chin. Phys. B 31 118202

[1] Nishi Y 2001 Chem. Rec. 1 406
[2] Feng X, Ren D, He X and Ouyang M 2020 Joule 4 743
[3] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[4] Bak S M, Hu E Y, Zhou Y N, Yu X Q, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q and Nam K W 2014 ACS Appl. Mater. Interfaces 6 22594
[5] Huang Q, Ma L, Liu A, Ma X W, Li J, Wang J and Dahn J R 2018 J. Power Sources 390 78
[6] Li Y, Liu X, Wang L, Feng X N, Ren D S, Wu Y, Xu G L, Lu L G, Hou J X, Zhang W F, Wang Y L, Xu W Q, Ren Y, Wang Z F, Huang J Y, Meng X F, Han X B, Wang H W, He X M, Chen Z H, Amine K and Ouyang M G 2021 Nano Energy 85 105878
[7] Mizuno F, Yada C and Iba H 2014 Lithium-Ion Batteries (Amsterdam: Elsevier) p. 273
[8] Yoshino A 2012 Angew. Chem. Int. Ed. 51 5798
[9] Dahn J R, Fuller E W, Obrovac M and Vonsacken U 1994 Solid State Ion. 69 265
[10] Zhang Z, Fouchard D and Rea J R 1998 J. Power Sources 70 16
[11] Maleki H, Deng G P, Anani A and Howard J 1999 J. Electrochem. Soc. 146 3224
[12] Biensan P, Simon B, Peres J P, de Guibert A, Broussely M, Bodet J M and Perton F 1999 J. Power Sources 81-82 906
[13] Lisbona D and Snee T 2011 Process Saf. Environ. Protect. 89 434
[14] Spotnitz R and Franklin J 2003 J. Power Sources 113 81
[15] MacNeil D D and Dahn J R 2001 J. Electrochem. Soc. 148 A1205
[16] Li Y, Feng X, Ren D, Ouyang M and Han X 2019 ACS Appl. Mater. Interfaces 11 46839
[17] Maleki H and Howard J N 2009 J. Power Sources 191 568
[18] Finegan D P, Tjaden B, Heenan T M M, Jervis R, Di Michiel M, Rack A, Hinds G, Brett D J L and Shearing P R 2017 J. Electrochem. Soc. 164 A3285
[19] Li Y, Gao X, Feng X, Ren D, Li Y, Hou J, Wu Y, Du J, Lu L and Ouyang M 2022 Energy 239 122097
[20] Wang Q, Mao B, Stoliarov S I and Sun J 2019 Prog. Energy Combust. Sci. 73 95
[21] Manthiram A, Yu X W and Wang S F 2017 Nat. Rev. Mater. 2 16103
[22] Wu J, Shen L, Zhang Z, Liu G, Wang Z, Zhou D, Wan H, Xu X and Yao X 2021 Electrochem. Energy Rev. 4 101
[23] Yao X, Huang B, Yin J Y, Peng G, Huang Z, Gao C, Liu D and Xu X 2016 Chin. Phys. B 25 18802
[24] Chen R S, Li Q H, Yu X Q, Chen L Q and Li H 2020 Chem. Rev. 120 6820
[25] Li H and Xu X X 2016 Energy Storage Science and Technology 5 607
[26] Inoue T and Mukai K 2017 ACS Appl. Mater. Interfaces 9 1507
[27] Bates A M, Preger Y, Torres-Castro L, Harrison K L, Harris S J and Hewson J 2022 Joule 6 742
[28] Whittingham M S 2004 Chem. Rev. 104 4271
[29] Noh H J, Youn S, Yoon C S and Sun Y K 2013 J. Power Sources 233 121
[30] Cormier M M E, Zhang N, Liu A, Li H Y, Inglis J and Dahn J R 2019 J. Electrochem. Soc. 166 A2826
[31] Deng Y M, Kang T X, Ma Z, Tan X X, Song X N, Wang Z, Pang P P, Shu D, Zuo X X and Nan J M 2019 Electrochim. Acta 295 703
[32] Lipson A L, Durham J L, LeResche M, Abu-Baker I, Murphy M J, Fister T T, Wang L X, Zhou F, Liu L, Kim K and Johnson D 2020 ACS Appl. Mater. Interfaces 12 18512
[33] Yu J P, Han Z H, Hu X H, Zhan H, Zhou Y H and Liu X J 2013 J. Power Sources 225 34
[34] Cormier M M E, Zhang N, Liu A, Li H Y, Inglis J and Dahn J R 2019 J. Electrochem. Soc. 166 A2826
[35] Zhang J N, Li Q H, Ouyang C Y, Yu X Q, Ge M Y, Huang X J, Hu E Y, Ma C, Li S F, Xiao R J, Yang W L, Chu Y, Liu Y J, Yu H G, Yang X Q, Huang X J, Chen L Q and Li H 2019 Nat. Energy 4 594
[36] Li H, Wang Z X, Chen L Q and Huang X J 2009 Adv. Mater. 21 4593
[37] Cho J, Kim Y J and Park B 2000 Chem. Mater. 12 3788
[38] Liu L J, Wang Z X, Li H, Chen L Q and Huang X J 2002 Solid State Ion. 152-153 341
[39] Cho J 2003 Electrochem. Commun. 5 146
[40] Ohta N, Takada K, Zhang L Q, Ma R Z, Osada M and Sasaki T 2006 Adv. Mater. 18 2226
[41] Ohta N, Takada K, Sakaguchi I, Zhang L Q, Ma R Z, Fukuda K, Osada M and Sasaki T 2007 Electrochem. Commun. 9 1486
[42] Kim H S, Oh Y, Kang K H, Kim J H, Kim J and Yoon C S 2017 ACS Appl. Mater. Interfaces 9 16063
[43] Shim J H, Han J M, Lee J H and Lee S 2016 ACS Appl. Mater. Interfaces 8 12205
[44] Morimoto H, Awano H, Terashima J, Shindo Y, Nakanishi S, Ito N, Ishikawa K and Tobishima S I 2013 J. Power Sources 240 636
[45] Wang Y, Zhang Q H, Xue Z C, Yang L F, Wang J Y, Meng F Q, Li Q H, Pan H Y, Zhang J N, Jiang Z, Yang W L, Yu X Q, Gu L and Li H 2020 Adv. Energy Mater. 10 2001413
[46] Vijayakumar V, Anothumakkool B, Kurungot S, Winter M and Nair J R 2021 Energy Environ. Sci. 14 2708
[47] Liu T T, Zhang J J, Han W, Zhang J N, Ding G L, Dong S M and Cui G L 2020 J. Electrochem. Soc. 167 070527
[48] Nagarajan S, Weiland C, Hwang S, Balasubramanian M and Arava L M R 2022 Chem. Mater. 34 4587
[49] Wu Y, Feng X N, Liu X, Wang X F, Ren D S, Wang L, Yang M, Wang Y L, Zhang W F, Li Y L, Zheng Y J, Lu L G, Han X B, Xu G L, Ren Y, Chen Z H, Chen J T, He X M, Amine K and Ouyang M G 2021 Energy Storage Mater. 43 248
[50] Lu J Z, Zhou J H, Chen R S, Fang F, Nie K H, Qi W B, Zhang J N, Yang R Z, Yu X Q, Li H, Chen L Q and Huang X J 2020 Energy Storage Mater. 32 191
[51] Wang J, Chen R, Yang L, Zan M, Chen P, Li Y, Li W, Yu H, Yu X, Huang X, Chen L and Li H 2022 Adv. Mater. 34 2200655
[52] Feng X, Fang M, He X, Ouyang M, Lu L, Wang H and Zhang M 2014 J. Power Sources 255 294
[53] Li W W, Sun C Z, Jin J, Li Y P, Chen C H and Wen Z Y 2019 J. Mater. Chem. A 7 27304
[54] Zhang J J, Zang X, Wen H J, Dong T T, Chai J C, Li Y, Chen B B, Zhao J W, Dong S M, Ma J, Yue L P, Liu Z H, Guo X X, Cui G L and Chen L Q 2017 J. Mater. Chem. A 5 4940
[55] Zhang J J, Zhao J H, Yue L P, Wang Q F, Chai J C, Liu Z H, Zhou X H, Li H, Guo Y G, Cui G L and Chen L Q 2015 Adv. Energy Mater. 5 1501082
[56] Jung K N, Shin H S, Park M S and Lee J W 2019 ChemElectroChem 6 3842
[57] Wang L P, Zhang X D, Wang T S, Yin Y X, Shi J L, Wang C R and Guo Y G 2018 Adv. Energy Mater. 8 1801528
[58] Abels G, Bardenhagen I, Schwenzel J and Langer F 2022 J. Electrochem. Soc. 169 020560
[59] Yang L F, Zhang J, Xue W R, Li J Z, Chen R S, Pan H Y, Yu X Q, Liu Y J, Li H, Chen L Q and Huang X J 2022 Adv. Funct. Mater. 32 2200096
[60] Li S, Lu J Z, Geng Z, Chen Y, Yu X Q, He M and Li H 2022 Appl. Mater. Interfaces 14 1195
[61] Yan Z, Pan H Y, Wang J Y, Chen R S, Li Q, Luo F, Yu X Q and Li H 2021 Rare Met. 40 1357
[62] Chen R, Nolan A M, Lu J, Wang J, Yu X, Mo Y, Chen L, Huang X and Li H 2020 Joule 4 812
[63] Wu J, Liu S, Han F, Yao X and Wang C 2021 Adv. Mater. 33 2000751
[1] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[2] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[3] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[4] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[5] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[6] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[7] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[8] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[9] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[10] Energy cooperation in quantum thermoelectric systems withmultiple electric currents
Yefeng Liu(刘叶锋), Jincheng Lu(陆金成), Rongqian Wang(王荣倩), Chen Wang(王晨), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2020, 29(4): 040504.
[11] The theory of helix-based RNA folding kinetics and its application
Sha Gong(龚沙), Taigang Liu(刘太刚), Yanli Wang(王晏莉), and Wenbing Zhang(张文炳)†. Chin. Phys. B, 2020, 29(10): 108703.
[12] Theoretical estimation of sonochemical yield in bubble cluster in acoustic field
Zhuang-Zhi Shen(沈壮志). Chin. Phys. B, 2020, 29(1): 014304.
[13] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[14] Study of glass transition kinetics of As2S3 and As2Se3 by ultrafast differential scanning calorimetry
Fan Zhang(张凡), Yimin Chen(陈益敏), Rongping Wang(王荣平), Xiang Shen(沈祥), Junqiang Wang(王军强), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2019, 28(4): 047802.
[15] Thermal properties of regular black hole with electric charge in Einstein gravity coupled to nonlinear electrodynamics
Yi-Huan Wei(魏益焕). Chin. Phys. B, 2019, 28(12): 120401.
No Suggested Reading articles found!