Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 128705    DOI: 10.1088/1674-1056/26/12/128705
Special Issue: TOPICAL REVIEW — Soft matter and biological physics
TOPICAL REVIEW—Soft matter and biological physics Prev   Next  

Molecular dynamic simulation of the thermodynamic and kinetic properties of nucleotide base pair

Yu-Jie Wang(王宇杰)1,2, Zhen Wang(王珍)1, Yan-Li Wang(王晏莉)1, Wen-Bing Zhang(张文炳)1
1. Department of Physics, Wuhan University, Wuhan 430071, China;
2. Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466000, China
Abstract  

A nucleotide base pair is the basic unit of RNA structures. Understanding the thermodynamic and kinetic properties of the closing and opening of a base pair is vital for quantitative understanding the biological functions of many RNA molecules. Due to the fast transition rate, it is difficult to directly observe opening and closing of single nucleic acid base pair in experiments. This review will provide a brief summary of the studies about the thermodynamic and kinetic properties of a base pair opening and closing by using molecular dynamic simulation methods.

Keywords:  thermodynamics      kinetics      molecular dynamic simulation  
Received:  29 August 2017      Revised:  14 October 2017      Accepted manuscript online: 
PACS:  87.10.Tf (Molecular dynamics simulation)  
  87.14.gn (RNA)  
  87.15.ap (Molecular dynamics simulation)  
  87.15.Cc (Folding: thermodynamics, statistical mechanics, models, and pathways)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574234 and 31270761).

Corresponding Authors:  Wen-Bing Zhang     E-mail:  wbzhang@whu.edu.cn

Cite this article: 

Yu-Jie Wang(王宇杰), Zhen Wang(王珍), Yan-Li Wang(王晏莉), Wen-Bing Zhang(张文炳) Molecular dynamic simulation of the thermodynamic and kinetic properties of nucleotide base pair 2017 Chin. Phys. B 26 128705

[1] Blignaut M 2012 Epigenetics 7 664
[2] Hirota K, Miyoshi T, Kugou K, Hoffman C S, Shibata T and Ohta K 2008 Nature 456 130
[3] Hüenhofer A, Schattner P and Polacek N 2005 Trends Genet. 21 289
[4] Eddy S R 2001 Nat. Rev. Genet. 2 919
[5] Chow C S, Behlen L S, Uhlenbeck O C and Barton J K 1992 Biochemistry 31 972
[6] Tinoco I and Bustamante C 1999 J. Mol. Biol. 293 271
[7] Hahn S 2004 Nat. Struct. Mol. Biol. 11 394
[8] Montange R K and Batey R T 2008 Ann. Rev. Biophys. 37 117
[9] Chakraborty D, Collepardo-Guevara R and Wales D J 2014 J. Am. Chem. Soc. 136 18052
[10] Bevilacqua P C and Blose J M 2008 Ann. Rev. Phys. Chem. 59 79
[11] Hyeon C, Dima R I and Thirumalai D 2006 Structure 14 1633
[12] Lin J C and Thirumalai D 2013 J. Am. Chem. Soc. 135 16641
[13] Sarkar K, Nguyen D A and Gruebele M 2010 RNA 16 2427
[14] Thirumalai D and Woodson S A 1996 Acc. Chem. Res. 29 433
[15] Nagel J H A, Gultyaev A P, Gerdes K and Pleij C W A 1999 RNA 5 1408
[16] Gerdes K and Wagner E G H 2007 Curr. Opin. Microbiol. 10 117
[17] Chen S J 2008 Ann. Rev. Biophys. 37 197
[18] Li P T X, Vieregg J and Tinoco I 2008 Ann. Rev. Biochem. 77 77
[19] Dethoff E A, Chugh J, Mustoe A M and AI-Hashimi H M 2012 Nature 482 322
[20] Mustoe A M, Brooks C L and Al-Hashimi H M 2014 Ann. Rev. Biochem. 83 441
[21] Puglisi J D and Tinoco I 1989 Methods Enzymol. 180 304
[22] Snoussi K and Leroy J L 2001 Biochemistry 40 8898
[23] Steinert H S, Rinnenthal J and Schwalbe H 2012 Biophys. J. 102 2564
[24] Chen C and Russu I M 2004 Biophys. J. 87 2545
[25] Krueger A, Protozanova E and Frank-Kamenetskii M D 2006 Biophys. J. 90 3091
[26] Folta-Stogniew E and Russu I M 1994 Biochemistry 33 11016
[27] Russell R, Zhuang X, Babcock H P, Millett I S, Doniach S, Chu S and Herschlag D 2002 Proc. Natl. Acad. Sci. USA 99 155
[28] Li P T X, Bustamante C and Tinoco I 2007 Proc. Natl. Acad. Sci. USA 104 7039
[29] Shcherbakova I, Mitra S, Laederach A and Brenowitz M 2008 Curr. Opin. Chem. Biol. 12 655
[30] Nagel J H, Gultyaev A P, Oistämö K J, Gerdes K and Pleij C W A 2002 Nucleic Acids Res. 30 e63
[31] Wenter P, Fürtig B, Hainard A, Schwalbe H and Pitsch S 2005 Angew. Chemie Int. Ed. 44 2600
[32] Wenter P, Fürtig B, Hainard A, Schwalbe H and Pitsch S 2006 ChemBioChem 7 417
[33] Qi W P and Lei X L 2011 Chin. Phys. Lett. 28 048702
[34] Li Z C, Duan L L, Feng G Q and Zhang Q G 2015 Chin. Phys. Lett. 32 118701
[35] Bao L, Zhang X, Jin L and Tan Z J 2016 Chin. Phys. B 25 018703
[36] Bernet J, Zakrzewska K and Lavery R 1997 J. Mol. Struct. THEOCHEM 398-399 473
[37] Banavali N K and MacKerell A D 2002 J. Mol. Biol. 319 141
[38] Várnai P and Lavery R 2002 J. Am. Chem. Soc. 124 7272
[39] Hagan M F, Dinner A R, Chandler D and Chakraborty A K 2003 Proc. Natl. Acad. Sci. USA 100 13922
[40] Pan Y and MacKerell A D 2003 Nucleic Acids Res. 31 7131
[41] Várnai P, Canalia M and Leroy J L 2004 J. Am. Chem. Soc. 126 14659
[42] Xu X, Yu T and Chen S J 2015 Proc. Natl. Acad. Sci. USA 151 7511113
[43] Giudice E, Várnai P and Lavery R 2003 Nucleic Acids Res. 31 1434
[44] Briki F, Ramstein J, Lavery R and Genest D 1991 J. Am. Chem. Soc. 113 2490
[45] Colizzi F and Bussi G 2012 J. Am. Chem. Soc. 134 5173
[46] Onoa B and Tinoco I 2004 Curr. Opin. Struct. Biol. 14 374
[47] Xia T, SantaLucia J, Burkard M E, et al. 1998 Biochemistry 37 14719
[48] Wang Y, Gong S, Wang Z and Zhang W 2016 J. Chem. Phys. 144 115101
[49] Hershkovitz E, Tannenbaum E, Howerton S B, Sheth A, Tannenbaum A and Williams L D 2003 Nucleic Acids Res. 31 6249
[50] Berne B J, Borkovec M and Straub J E 1988 J. Phys. Chem. 92 3711
[51] Hänggi P, Talkner P and Borkovec M 1990 Rev. Mod. Phys. 62 251
[52] Hummer G 2004 J. Chem. Phys. 120 516
[53] Chung H S, Louis J M and Eaton W A 2009 Proc. Natl. Acad. Sci. USA 106 11837
[54] Chung H S and Eaton W A 2013 Nature 502 685
[55] Cheatham T E and Case D A 2013 Biopolymers 99 969
[56] Špacková N, Berger I, Efli M and Šponer J 1998 J. Am. Chem. Soc. 120 6147
[57] Zgarbová M, Otyepka M, Šponer J, Lankaš F and Jurečka P 2014 J. Chem. Theory Comput. 10 3177
[58] Lavery R, Zakrzewska K, Beveridge D, Bishop T C, Case D A, Cheatham T, Dixit S, Jayaram B, Lankas F, Laughton C, Maddocks J H, Michon A, Osman R, Orozco M, Perez A, Singh T, Spackova N and Sponer J 2009 Nucleic Acids Res. 38 299
[59] Zhang Y, Zhang J and Wang W 2011 J. Am. Chem. Soc. 133 6882
[60] Wu Y Y, Zhang Z L, Zhang J S, Zhu X L and Tan Z J 2015 Nucleic Acids Res. 43 6156
[1] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[2] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[3] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[4] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[5] Atomistic simulations of the lubricative mechanism of a nano-alkane lubricating film between two layers of Cu-Zn alloy
Jing Li(李京), Peng Zhu(朱鹏), Yuan-Yuan Sheng(盛圆圆), Lin Liu(刘麟), and Yong Luo(罗勇). Chin. Phys. B, 2021, 30(8): 080205.
[6] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[7] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[8] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[9] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[10] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[11] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[12] Energy cooperation in quantum thermoelectric systems withmultiple electric currents
Yefeng Liu(刘叶锋), Jincheng Lu(陆金成), Rongqian Wang(王荣倩), Chen Wang(王晨), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2020, 29(4): 040504.
[13] Hexagonal arrangement of phospholipids in bilayer membranes
Xiao-Wei Chen(陈晓伟), Ming-Xia Yuan(元明霞), Han Guo(郭晗), Zhi Zhu(朱智). Chin. Phys. B, 2020, 29(3): 030505.
[14] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[15] The theory of helix-based RNA folding kinetics and its application
Sha Gong(龚沙), Taigang Liu(刘太刚), Yanli Wang(王晏莉), and Wenbing Zhang(张文炳)†. Chin. Phys. B, 2020, 29(10): 108703.
No Suggested Reading articles found!