Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108703    DOI: 10.1088/1674-1056/abab84
Special Issue: SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
SPECIAL TOPIC—Modeling and simulations for the structures and functions of proteins and nucleic acids Prev   Next  

The theory of helix-based RNA folding kinetics and its application

Sha Gong(龚沙)1, Taigang Liu(刘太刚)2, Yanli Wang(王晏莉)2, and Wenbing Zhang(张文炳)2,
1 Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
2 Department of Physics, Wuhan University, Wuhan 430072, China
Abstract  

RNAs carry out diverse biological functions, partly because different conformations of the same RNA sequence can play different roles in cellular activities. To fully understand the biological functions of RNAs requires a conceptual framework to investigate the folding kinetics of RNA molecules, instead of native structures alone. Over the past several decades, many experimental and theoretical methods have been developed to address RNA folding. The helix-based RNA folding theory is the one which uses helices as building blocks, to calculate folding kinetics of secondary structures with pseudoknots of long RNA in two different folding scenarios. Here, we will briefly review the helix-based RNA folding theory and its application in exploring regulation mechanisms of several riboswitches and self-cleavage activities of the hepatitis delta virus (HDV) ribozyme.

Keywords:  RNA folding kinetics      RNA structure      Riboswitch      HDV ribozyme  
Received:  29 June 2020      Revised:  30 July 2020      Accepted manuscript online:  01 August 2020
PACS:  87.14.gn (RNA)  
  87.15.bd (Secondary structure)  
  87.15.Cc (Folding: thermodynamics, statistical mechanics, models, and pathways)  
  87.18.Cf (Genetic switches and networks)  
Corresponding Authors:  Corresponding author. E-mail: wbzhang@whu.edu.cn   
About author: 
†Corresponding author. E-mail: wbzhang@whu.edu.cn
* Project supported by the Science Fund from the Key Laboratory of Hubei Province, China (Grant No. 201932003) and the National Natural Science Foundation of China (Grant Nos. 1157324 and 31600592).

Cite this article: 

Sha Gong(龚沙), Taigang Liu(刘太刚), Yanli Wang(王晏莉), and Wenbing Zhang(张文炳)† The theory of helix-based RNA folding kinetics and its application 2020 Chin. Phys. B 29 108703

Fig. 1.  

Transitions between states (A, B, C) through formation (A to B), disruption (B to A) of a helix (red), and exchange between two helices in A (green) and C (the left/right shoulder of the helix is colored black/green). The relevant pathways labeled along the arrow are shown in the bottom boxes, where the dotted dark lines denote the schematic energy landscape of zipping and tunneling pathways. The unfolding-refolding pathway are shown with gray color, U is the unfolded, open chain.

Fig. 2.  

The main pathways of HDV ribozyme under two different scenarios: refolding (a) and co-transcriptional folding (b). Upper and lowercase letters denote the ribozyme region and the flanking region. The unpaired nucleotides in the external loop are simply described by dotted lines in panel (a). The rate-limited transition in the slow refolding pathway panel (a) and the main co-transcriptional transition with net flux about 90% (b) are shown with red and green arrows respectively. Except the different RNA lengths in panels (a) and (b), structure model of states denoted inside and outside parentheses in panel (b) are the same.

Fig. 3.  

The co-transcriptional folding behaviors of the yjdF riboswitch from B. subtilis. The population kinetics of main states and their structure at an elongation rate of 15 nt/s are shown in (a) with 0-μM and (b) with 10-μM ligand. Important folding events are mapped in the low panel. The superscript “b” denotes the corresponding state with ligand bound. C0 is the open chain and C4 is a four-way branch structure shown in box near C5. Structures C1, C2, and C3 composed of one or more hairpins labeled in the brackets nearby. The RBS region is colored pink.

Fig. 4.  

Structure transitions on main co-transcriptional folding pathways of the pbuE riboswitch. T is the terminator hairpin. Nucleotides within helix regions of the aptamer structure and the pause site are colored differently.

Fig. 5.  

Regulatory behaviors of the TPP (a) and SMK riboswitch (b). The nature ligand of SMK riboswitch is S-adenosylmethionine (SAM). The arrows with dotted lines denote the co-transcriptional folding, where RNAs transit from a series of intermediate states (not shown) to ON state, which is formed near the end of transcription. The 5’ splice site in the TPP riboswitch (a) and the SD in the SMK riboswitch are colored red. The 5’ ends of nascent RNA are shown with red circles.

[1]
Zhuang X 2000 Science 288 2048 DOI: 10.1126/science.288.5473.2048
[2]
Strulson C A, Molden R C, Keating C D, Bevilacqua P C 2012 Nat. Chem. 4 941 DOI: 10.1038/nchem.1466
[3]
Das R, Karanicolas J, Baker D 2010 Nat. Methods 7 291 DOI: 10.1038/nmeth.1433
[4]
Förster U, Weigand J E, Trojanowski P, Suess B, Wachtveitl J 2012 Nucleic Acids Res. 40 1807 DOI: 10.1093/nar/gkr835
[5]
Gong B, Klein D 2011 J. Am. Chem. Soc. 133 14188 DOI: 10.1021/ja205185g
[6]
Marraffini L A, Sontheimer E J 2010 Nat. Rev. Genet. 11 181 DOI: 10.1038/ncomms8552
[7]
Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A 2000 Cell 102 615 DOI: 10.1016/S0092-8674(00)00084-2
[8]
Nissen P, Hansen J, Ban N, Moore P B, Steitz T A 2000 Science 289 920 DOI: 10.1126/science.289.5481.920
[9]
Ahmad S, Muthukumar S, Kuncha S K, Routh S B, Yerabham A S K, Hussain T, Kamarthapu V, Kruparani S P, Sankaranarayanan R 2015 Nat. Commun. 6 1 DOI: 10.1038/ncomms8552
[10]
Zhong G, Wang H, He W, Li Y, Mou H, Tickner Z J, Tran M H, Ou T, Yin Y, Diao H, Farzan M 2020 Nat. Biotechnol. 38 169 DOI: 10.1038/s41587-019-0357-y
[11]
Wimberly B T, Brodersen D E, Clemons W M, Morgan-Warren R J, Carter A P, Vonrhein C, Hartsch T, Ramakrishnan V 2000 Nature 407 327 DOI: 10.1038/35030006
[12]
Herschlag D 1995 J. Biol. Chem. 270 20871 DOI: 10.1074/jbc.270.36.20871
[13]
Geis M, Flamm C, Wolfinger M T, Tanzer A, Hofacker I L, Middendorf M, Mandl C, Stadler P F, Thurner C 2008 J. Mol. Biol. 379 160 DOI: 10.1016/j.jmb.2008.02.064
[14]
Thirumalai D, Hyeon C 2005 Biochemistry 44 4957 DOI: 10.1021/bi047314+
[15]
Frieda K L, Block S M 2012 Science 338 397 DOI: 10.1126/science.1225722
[16]
Gong S, Wang Y J, Zhang W B 2015 J. Chem. Phys. 143 045103 DOI: 10.1063/1.4927390
[17]
Poot R A, Tsareva N V, Boni I V, van Duin J 1997 Proc. Natl. Acad. Sci. 94 10110 DOI: 10.1073/pnas.94.19.10110
[18]
Gerdes K, Wagner E G H 2007 Curr. Opin. Microbiol. 10 117 DOI: 10.1016/j.mib.2007.03.003
[19]
Ren A, Rajashankar K R, Patel D J 2012 Nature 486 85 DOI: 10.1038/nature11152
[20]
Zemora G, Waldsich C 2010 RNA Biol. 7 634 DOI: 10.4161/rna.7.6.13554
[21]
DebRoy S, Gebbie M, Ramesh A, Goodson J R, Cruz M R, van Hoof A, Winkler W C, Garsin D A 2014 Science 345 937 DOI: 10.1126/science.1255091
[22]
Lemay J F, Desnoyers G, Blouin S, Heppell B, Bastet L, St-Pierre P, Massé E, Lafontaine D A 2011 PLoS Genet. 7 e1001278 DOI: 10.1371/journal.pgen.1001278
[23]
Schroeder R, Grossberger R, Pichler A, Waldsich C 2002 Curr. Opin. Struct. Biol. 12 296 DOI: 10.1016/S0959-440X(02)00325-1
[24]
Wong T N, Pan T 2009 Methods Enzymol. 468 167 DOI: 10.1016/S0076-6879(09)68009-5
[25]
Lubkowska L, Maharjan A S, Komissarova N 2011 J. Biol. Chem. 286 31576 DOI: 10.1074/jbc.M111.249359
[26]
Boyle J, Robillard G T, Kim S H 1980 J. Mol. Biol. 139 601 DOI: 10.1016/0022-2836(80)90051-0
[27]
Nussinov R, Tinoco I 1981 J. Mol. Biol. 151 519 DOI: 10.1016/0022-2836(81)90008-5
[28]
Zhang L, Bao P, Leibowitz M J, Zhang Y 2009 RNA 15 1986 DOI: 10.1261/rna.1638609
[29]
Wong T N, Sosnick T R, Pan T 2007 Proc. Natl. Acad. Sci. 104 17995 DOI: 10.1073/pnas.0705038104
[30]
Pan T, Artsimovitch I, Fang X W, Landick R, Sosnick T R 1999 Proc. Natl. Acad. Sci. 96 9545 DOI: 10.1073/pnas.96.17.9545
[31]
Heilman-Miller S L, Woodson S A 2003 RNA 9 722 DOI: 10.1261/rna.5200903
[32]
Cech T R 1990 Ann. Rev. Biochem. 59 543 DOI: 10.1146/annurev.bi.59.070190.002551
[33]
Michel F 1995 Ann. Rev. Biochem. 64 435 DOI: 10.1146/annurev.bi.64.070195.002251
[34]
Lutz B, Faber M, Verma A, Klumpp S, Schug A 2014 Nucleic Acids Res. 42 2687 DOI: 10.1093/nar/gkt1213
[35]
Sauerwine B, Widom M 2011 Phys. Rev. E 84 061912 DOI: 10.1103/PhysRevE.84.061912
[36]
Faber M, Klumpp S 2013 Phys. Rev. E 88 052701 DOI: 10.1103/PhysRevE.88.052701
[37]
Danilova L V, Pervouchine D D, Favorov A V, Mironov A A 2006 J. Bioinform. Comput. Biol. 4 589 DOI: 10.1142/S0219720006001904
[38]
Hofacker I L, Flamm C, Heine C, Wolfinger M T, Scheuermann G, Stadler P F 2010 RNA 16 1308 DOI: 10.1261/rna.2093310
[39]
Xayaphoummine A, Bucher T, Thalmann F, Isambert H 2003 Proc. Natl. Acad. Sci. 100 15310 DOI: 10.1073/pnas.2536430100
[40]
Xayaphoummine A, Bucher T, Isambert H 2005 Nucleic Acids Res. 33 605 DOI: 10.1093/nar/gki166
[41]
Gong S, Wang Y J, Zhang W B 2015 J. Chem. Phys. 142 015103 DOI: 10.1063/1.4905214
[42]
Zhao J, Hyman L, Moore C 1999 Microbiol. Mol. Biol. Rev. 63 405 DOI: 10.1128/MMBR.63.2.405-445.1999
[43]
Zhao P N, Zhang W B, Chen S J 2011 J. Chem. Phys. 135 245101 DOI: 10.1063/1.3671644
[44]
Gong S, Wang Y L, Wang Z, Wang Y J, Zhang W B 2018 J. Theor. Biol. 439 152 DOI: 10.1016/j.jtbi.2017.12.007
[45]
Chen J W, Zhang W B 2012 J. Chem. Phys. 137 225102 DOI: 10.1063/1.4769821
[46]
Chen J W, Gong S, Wang Y J, Zhang W B 2014 J. Chem. Phys. 140 025102 DOI: 10.1063/1.4861037
[47]
Wang Y L, Wang Z, Liu T G, Gong S, Zhang W B 2018 RNA 24 1229 DOI: 10.1261/rna.065961.118
[48]
Gong S, Wang Y J, Wang Z, Wang Y L, Zhang W B 2016 J. Phys. Chem. B 120 12305 DOI: 10.1021/acs.jpcb.6b09698
[49]
Colizzi F, Bussi G 2012 J. Am. Chem. Soc. 134 5173 DOI: 10.1021/ja210531q
[50]
Xu X, Yu T, Chen S J 2016 Proc. Natl. Acad. Sci. USA 113 116 DOI: 10.1073/pnas.1517511113
[51]
Wang Y J, Wang Z, Wang Y L, Zhang W B 2017 Chin. Phys. B 26 128705 DOI: 10.1088/1674-1056/26/12/128705
[52]
Wang Y J, Gong S, Wang Z, Zhang W B 2016 J. Chem. Phys. 144 115101 DOI: 10.1063/1.4944067
[53]
Wang Y J, Liu T G, Yu T, Tan Z J, Zhang W B 2020 RNA 26 470 DOI: 10.1261/rna.073882.119
[54]
Wang Y J, Wang Z, Wang Y L, Liu T G, Zhang W B 2018 J. Chem. Phys. 148 045101 DOI: 10.1063/1.5013282
[55]
Zhang W B, Chen S J 2006 Biophys. J. 90 765 DOI: 10.1529/biophysj.105.062935
[56]
Zhao P N, Zhang W B, Chen S J 2010 Biophys. J. 98 1617 DOI: 10.1016/j.bpj.2009.12.4319
[57]
Xia T, SantaLucia J, Burkard M E, Kierzek R, Schroeder S J, Jiao X, Cox C, Turner D H 1998 Biochemistry 37 14719 DOI: 10.1021/bi9809425
[58]
Urban S, Bartenschlager R, Kubitz R, Zoulim F 2014 Gastroenterology 147 48 DOI: 10.1053/j.gastro.2014.04.030
[59]
Diegelman-Parente A, Bevilacqua P C 2002 J. Mol. Biol. 324 1 DOI: 10.1016/S0022-2836(02)01027-6
[60]
Chadalavada D M, Senchak S E, Bevilacqua P C 2002 J. Mol. Biol. 317 559 DOI: 10.1006/jmbi.2002.5434
[61]
Macnaughton T B, Shi S T, Modahl L E, Lai M M C 2002 J. Virol. 76 3920 DOI: 10.1128/JVI.76.8.3920-3927.2002
[62]
Chadalavada D M, Knudsen S M, Nakano S, Bevilacqua P C 2000 J. Mol. Biol. 301 349 DOI: 10.1006/jmbi.2000.3953
[63]
Woodson S A, Emerick V L 1993 Mol. Cell. Biol. 13 1137 DOI: 10.1128/MCB.13.2.1137
[64]
Cao Y, Woodson S A 2000 RNA 6 1248 DOI: 10.1017/S1355838200000893
[65]
Chadalavada D M, Cerrone-Szakal A L, Bevilacqua P C 2007 RNA 13 2189 DOI: 10.1261/rna.778107
[66]
Delfosse V, Bouchard P, Bonneau E, Dagenais P, Centre-ville S 2010 Nucleic Acids Res. 38 2057 DOI: 10.1093/nar/gkp1080
[67]
Hennelly S P, Novikova I V, Sanbonmatsu K Y 2013 Nucleic Acids Res. 41 1922 DOI: 10.1093/nar/gks978
[68]
Perdrizet G A, Artsimovitch I, Furman R, Sosnick T R, Pan T 2012 Proc. Natl. Acad. Sci. USA 109 3323 DOI: 10.1073/pnas.1113086109
[69]
Mellin J R, Koutero M, Dar D, Nahori M-A, Sorek R, Cossart P 2014 Science 345 940 DOI: 10.1126/science.1255083
[70]
Feng J, Walter N G, Brooks C L 2011 J. Am. Chem. Soc. 133 4196 DOI: 10.1021/ja110411m
[71]
Kierzek E, Kierzek R 2020 J. Biol. Chem. 295 2568 DOI: 10.1074/jbc.H120.012787
[72]
Strobel B, Spöring M, Klein H, Blazevic D, Rust W, Sayols S, Hartig J S, Kreuz S 2020 Nat. Commun. 11 714 DOI: 10.1038/s41467-020-14491-x
[73]
Weinberg Z, Wang J X, Bogue J, Yang J, Corbino K, Moy R H, Breaker R R 2010 Genome Biol. 11 R31 DOI: 10.1186/gb-2010-11-3-r31
[74]
Breaker R R 2012 Cold Spring Harb. Perspect. Biol. 4 1 DOI: 10.1101/cshperspect.a003566
[75]
Li S, Hwang X Y, Stav S, Breaker R R 2016 RNA 22 530 DOI: 10.1261/rna.054890.115
[76]
Studer S M, Joseph S 2006 Mol. Cell 22 105 DOI: 10.1016/j.molcel.2006.02.014
[77]
Lin J C, Yoon J, Hyeon C, Thirumalai D 2015 Methods in Enzymology San Diego Elsevier Inc. 235 258 DOI: 10.1038/nrg2749
[78]
Reining A, Nozinovic S, Schlepckow K, Buhr F, Fürtig B, Schwalbe H 2013 Nature 499 355 DOI: 10.1038/nature12378
[79]
Wachter A, Tunc-Ozdemir M, Grove B C, Green P J, Shintani D K, Breaker R R 2007 Plant Cell 19 3437 DOI: 10.1105/tpc.107.053645
[80]
Cheah M T, Wachter A, Sudarsan N, Breaker R R 2007 Nature 447 497 DOI: 10.1038/nature05769
[81]
Lin J C, Thirumalai D 2013 J. Am. Chem. Soc. 135 16641 DOI: 10.1021/ja408595e
[82]
Rieder R, Lang K, Graber D, Micura R 2007 ChemBioChem 8 896 DOI: 10.1002/(ISSN)1439-7633
[83]
Lu C, Smith A M, Ding F, Chowdhury A, Henkin T M, Ke A 2011 J. Mol. Biol. 409 786 DOI: 10.1016/j.jmb.2011.04.039
[84]
Huang W, Kim J, Jha S, Aboul-ela F 2012 J. Mol. Biol. 418 331 DOI: 10.1016/j.jmb.2012.02.019
[85]
Sun T, Zhao C, Chen S J 2018 J. Phys. Chem. B 122 7484 DOI: 10.1021/acs.jpcb.8b04249
[86]
Ottink O M, Rampersad S M, Tessari M, Zaman G J R, Heus H A, Wijmenga S S 2007 RNA 13 2202 DOI: 10.1261/rna.635307
[87]
Soto A M, Misra V, Draper D E 2007 Biochemistry 46 2973 DOI: 10.1021/bi0616753
[88]
Tan Z J, Chen S J 2011 Biophys. J. 101 176 DOI: 10.1016/j.bpj.2011.05.050
[89]
Tan Z J, Chen S J 2010 Biophys. J. 99 1565 DOI: 10.1016/j.bpj.2010.06.029
[1] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[2] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
[3] Methods and applications of RNA contact prediction
Huiwen Wang(王慧雯) and Yunjie Zhao(赵蕴杰)†. Chin. Phys. B, 2020, 29(10): 108708.
[4] RNA structure prediction:Progress and perspective
Shi Ya-Zhou (时亚洲), Wu Yuan-Yan (吴园燕), Wang Feng-Hua (王凤华), Tan Zhi-Jie (谭志杰). Chin. Phys. B, 2014, 23(7): 078701.
No Suggested Reading articles found!