Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 110501    DOI: 10.1088/1674-1056/26/11/110501
GENERAL Prev   Next  

Effect of plasma on combustion characteristics of boron

Peng Zhang(张鹏)1, Wenli Zhong(钟文丽)1, Qian Li(李倩)1, Bo Yang(杨波)2, Zhongguang Li(李忠光)3, Xiao Luan(栾骁)4
1. Department of Space Command, Space Engineering University, Beijing 101416, China;
2. 63819 Unit of People's Liberation Army, Yibin 644000, China;
3. Department of Equipment Support, Military Transportation University, Tianjin 300161, China;
4. 63618 Unit of People's Liberation Army, Korla 841001, China
Abstract  

As it is very difficult to release boron energy completely, kinetic mechanism of boron is not clear, which leads to the lack of theoretical guidance for studying how to accelerate boron combustion. A new semi-empirical boron combustion model is built on the King combustion model, which contains a chemical reaction path; two new methods of plasma-assisted boron combustion based on kinetic and thermal effects respectively are built on the ZDPLASKIN zero-dimensional plasma model. A plasma-supporting system is constructed based on the planar flame, discharge characteristics and the spectral characteristics of plasma and boron combustion are analyzed. The results show that discharge power does not change the sorts of excited-particles, but which can change the concentration of excited-particles. Under this experimental condition, plasma kinetic effect will become the strongest at the discharge power of 40 W; when the discharge power is less than 40 W, plasma mainly has kinetic effect, otherwise plasma has thermal effect. Numerical simulation result based on plasma kinetic effect is consistent with the experimental result at the discharge power of 40 W, and boron ignition delay time is shortened by 53.8% at the discharge power of 40 W, which indicates that plasma accelerates boron combustion has reaction kinetic paths, while the ability to accelerate boron combustion based on thermal effect is limited.

Keywords:  plasma-assisted combustion      boron      ignition delay time      reaction kinetics  
Received:  09 July 2017      Revised:  04 August 2017      Accepted manuscript online: 
PACS:  05.20.Dd (Kinetic theory)  
  52.25.Dg (Plasma kinetic equations)  
  82.33.Xj (Plasma reactions (including flowing afterglow and electric discharges))  
  82.33.Vx (Reactions in flames, combustion, and explosions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11372356).

Corresponding Authors:  Peng Zhang     E-mail:  zhangpengtf@126.com

Cite this article: 

Peng Zhang(张鹏), Wenli Zhong(钟文丽), Qian Li(李倩), Bo Yang(杨波), Zhongguang Li(李忠光), Xiao Luan(栾骁) Effect of plasma on combustion characteristics of boron 2017 Chin. Phys. B 26 110501

[1] Beckstead M W, Puduppakkam K, Thakre P and Yang V 2007 Prog. Energ. Combust. 33 497
[2] Fry R S 2004 J. Propul. Power 20 27
[3] Mi X M, Goroshin S, Higgins J A, Stowe R and Ringuette S 2013 Combust. Flame 160 2608
[4] Fomin M V, Zvegintsev I V, Mazhul I I and Shumskii V V 2010 J. Appl. Mech. Tech. Ph. 51 792
[5] Ju Y G and Sun W T 2015 Prog. Energ. Combust. 48 21
[6] Aleksandrov N L, Kindysheva S V and Kochetov I V 2014 Plasma Sources Sci. Techol. 23 015017
[7] He L M, Liu X J, Ding W, Shen Y, Wang F and Song Z X 2012 High Volt. Engin. 38 1126
[8] Sun W, Sang H W and Ju Y 2014 Combust. Flame 161 2054
[9] Askarova S A, Karpenko I E, Messerle E V and Ustimenko B A. 2006 High Energ. Chem. 40 141
[10] Alimi R and Berdichevsky V 2007 Propellants. Explos. Pyrotech. 32 514
[11] Fang C B, Xia Z X, Xiao Y L, Hu J X and Liu D P. 2013 Acta Phys. Sin. 62 164702
[12] Ao W, Yang W J, Wang Y, Zhou J H, Liu J Z and Cen K F 2014 J. Propul. Power 30 760
[13] Zhang P, Hong Y J, Ding X Y, Shen S Y and Feng X P 2015 Acta Phys. Sin. 64 205203
[14] Zhang P, Hong Y J, Ding X Y, Shen S Y and Yang B 2015 J. Propul. Technol. 36 1582
[15] Yeh C L and Kuo K K 1996 Energy Combust. Sci. 22 511
[16] Pastenack L 1992 Combust. Flame 90 259
[17] Yu J L, He L M, Ding W, Wang Y Q and Du C 2013 Chin. Phys. B 22 055201
[18] Fu T R, Yang Z J and Cheng X F 2009 Chin. Soc. Elec. Eng. 29 81
[19] Kong C D, Yu D, Yao Q, Zhuo J K and Li S Q 2015 Opt. Precision Eng. 23 2288
[20] Trunov M A, Schoenitz M, Zhu X M and Dreizin E L 2005 Combust. Flame 140 310
[21] Kong C D, Yao Q, Yu D and Li S Q 2015 P. Combust. Inst. 35 2479
[22] Yeh C L and Kuo K K 1996 Prog. Energ. Combust. 22 511
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[3] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[4] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[5] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[6] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[7] Effects of B segregation on Mo-rich phase precipitation in S31254 super-austenitic stainless steels: Experimental and first-principles study
Pan-Pan Xu(徐攀攀), Jin-Yao Ma(马晋遥), Zhou-Hua Jiang(姜周华), Yi Zhang(张翊), Chao-Xiong Liang(梁超雄), Nan Dong(董楠), and Pei-De Han(韩培德). Chin. Phys. B, 2022, 31(11): 116402.
[8] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[9] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[10] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[11] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[12] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[13] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[14] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[15] Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination
Wei-Fan Wang(王伟凡), Jian-Feng Wang(王建峰), Yu-Min Zhang(张育民), Teng-Kun Li(李腾坤), Rui Xiong(熊瑞), Ke Xu(徐科). Chin. Phys. B, 2020, 29(4): 047305.
No Suggested Reading articles found!