SPECIAL TOPIC—8th IUPAP International Conference on Biological Physics |
Prev
Next
|
|
|
Colloidally deposited nanoparticle wires for biophysical detection |
Sophie C. Shena, Liu Wen-Tao (刘文韬)b, Diao Jia-Jie (刁佳杰)c |
a University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; b College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA; c Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract Among the techniques developed to prepare nanoparticle wires for multiple applications, the colloidal deposition method at interface has been regarded as cost-efficient and eco-friendly, and hence has attracted an increasing amount of research attention. In this report, the recent developments in preparing nanoparticle wires and integrated nanoparticle wire arrays using this technique have been reviewed. Furthermore, we have also discussed the application of these nanoparticle structures in detecting chemical and biological molecules.
|
Received: 22 January 2015
Revised: 24 February 2015
Accepted manuscript online:
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
78.67.Rb
|
(Nanoporous materials)
|
|
87.80.-y
|
(Biophysical techniques (research methods))
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities through Xi'an Jiaotong University and the National Key Basic Research Program of China (Grant No. 2015CB856304). |
Corresponding Authors:
Diao Jia-Jie
E-mail: diaojj@mail.xjtu.edu.cn
|
Cite this article:
Sophie C. Shen, Liu Wen-Tao (刘文韬), Diao Jia-Jie (刁佳杰) Colloidally deposited nanoparticle wires for biophysical detection 2015 Chin. Phys. B 24 127308
|
[1] |
Diao J J and Chen H 2006 J. Chem. Phys. 124 116103
|
[2] |
Prasad B L, Sorensen C M and Klabunde K J 2008 Chem. Soc. Rev. 37 1871
|
[3] |
Gao S, Zhao S L, Xu Z, Yang Y F, Liu Z M and Xie X Y 2014 Acta Phys. Sin. 63 157702 (in Chinese)
|
[4] |
Xu R, Jia G Y and Liu C L 2014 Acta Phys. Sin. 63 078501 (in Chinese)
|
[5] |
Duan F L and Wang Y 2014 Acta Phys. Sin. 63 136102 (in Chinese)
|
[6] |
Hu Y, Li J C, Shen M W and Shi X Y 2014 Chin. Phys. B 23 078704
|
[7] |
Singh N S, Singh S D and Meetei S D 2014 Chin. Phys. B 23 058104
|
[8] |
Monticone F and Alu A 2014 Chin. Phys. B 23 047809
|
[9] |
Diao J J, Chen G D, Xi C, Fan Z Y and Yuan J S 2003 Chin. Phys. 12 100
|
[10] |
Diao J J, Huang S and Reeves M E 2005 J. Chem. Phys. 122 146101
|
[11] |
Tao A R, Huang J and Yang P 2008 ACC Chem. Res. 41 1662
|
[12] |
Diao J J and Chen G D 2001 J. Phys. D: Appl. Phys. 34 L79
|
[13] |
Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E and Requicha A A 2003 Nat. Mater. 2 229
|
[14] |
Wei Q H, Su K H, Durant S and Zhang X 2004 Nano Lett. 4 1067
|
[15] |
Barry C R, Lwin N Z, Zheng W and Jacobs H O 2003 Appl. Phys. Lett. 83 5527
|
[16] |
Cui Y, Bjork M T, Liddle J A, Sonnichsen C, Boussert B and Alivisatos A P 2004 Nano Lett. 4 1093
|
[17] |
Demers L M, Ginger D S, Park S J, Li Z, Chung S W and Mirkin C A 2002 Science 296 1836
|
[18] |
Yin Y D, Lu Y and Xia Y N 2001 J. Am. Chem. Soc. 123 771
|
[19] |
Hermanson K D, Lumsdon S O, Williams J P, Kaler E W and Velev O D 2001 Science 294 1082
|
[20] |
Velev O D and Kaler E W 1999 Langmuir 15 3693
|
[21] |
Dimitrov A S and Nagayama K 1996 Langmuir 12 1303
|
[22] |
Jiang P, Bertone J F, Hwang K S and Colvin V L 1999 Chem. Mater. 11 2132
|
[23] |
Gupta S, Alargova R G, Kilpatrick P K and Velev O D 2010 Langmuir 26 3441
|
[24] |
Istrate E and Sargent E H 2006 Rev. Mod. Phys. 78 455
|
[25] |
Zhang J, Li Y, Zhang X and Yang B 2010 Adv. Mater. 22 4249
|
[26] |
Diao J J, Qiu F S, Chen G D and Reeves M E 2003 J. Phys. D: Appl. Phys. 36 L25
|
[27] |
Chen Y, Luo G H, Diao J J, Chornoguz O, Reeves M and Vertes A 2007 J. Phys.: Conf. Ser. 59 548
|
[28] |
Duan X and Lieber C M 2013 Chem. Asian J. 8 2304
|
[29] |
Diao J, Cipriano D J, Zhao M, Zhang Y, Shah S, Padolina M S, Pfuetzner R A and Brunger A T 2013 J. Am. Chem. Soc. 135 15274
|
[30] |
Lai Y, Diao J, Cipriano D J, Zhang Y, Pfuetzner R A, Padolina M S and Brunger A T 2014 Elife 3 e03756
|
[31] |
Diao J, Zhao M, Zhang Y, Kyoung M and Brunger A T 2013 Bioessays 35 658
|
[32] |
Diao J, Yoon T Y, Su Z, Shin Y K and Ha T 2009 Langmuir 25 7177
|
[33] |
Cohen-Karni T and Lieber C M 2013 Pure Appl. Chem. 85 883
|
[34] |
Giraldo O, Durand J P, Ramanan H, Laubernds K, Suib S L, Tsapatsis M, Brock S L and Marquez M 2003 Angew. Chem. Int. Ed. 42 2905
|
[35] |
Diao J J, Hutchison J B, Luo G H and Reeves M E 2005 Appl. Phys. Lett. 87 103113
|
[36] |
Huang J X, Fan R, Connor S and Yang P D 2007 Angew. Chem. Int. Ed. 46 2414
|
[37] |
Huang J X, Tao A R, Connor S, He R R and Yang P D 2006 Nano Lett. 6 524
|
[38] |
Kakefuda Y, Narita K, Komeda T, Yoshimoto S and Hasegawa S 2008 Appl. Phys. Lett. 93 163103
|
[39] |
Olgun U 2010 ACS Appl. Mater. Interfaces 2 28
|
[40] |
Watanabe S, Inukai K, Mizuta S and Miyahara M T 2009 Langmuir 25 7287
|
[41] |
Watanabe S, Mino Y, Ichikawa Y and Miyahara M T 2012 Langmiur 28 12982
|
[42] |
Diao J J, Chen G D, Qiu F S and Yan G J 2004 Chin. Phys. 13 1927
|
[43] |
Diao J J, Hutchison J B, Luo G H and Reeves M E 2005 J. Chem. Phys. 122 184710
|
[44] |
Diao J J and Xia M G 2009 Colloids Surf. A 338 167
|
[45] |
Farcau C, Moreira H, Viallet B T, Grisolia J R M and Ressier L 2010 ACS Nano 4 7275
|
[46] |
Huang J X, Kim F, Tao A R, Connor S and Yang P D 2005 Nat. Mater. 4 896
|
[47] |
Diao J J and Cao Q 2011 AIP Advances 1 012115
|
[48] |
Mino Y, Watanabe S and Miyahara M T 2011 Langmuir 27 5290
|
[49] |
Garcia M A, de la Venta J, Crespo P, LLopis J, Penades S, Fernandez A and Hernando A 2005 Phys. Rev. B 72 241403
|
[50] |
Cui Y, Wei Q Q, Park H K and Lieber C M 2001 Science 293 1289
|
[51] |
Patolsky F, Zheng G F, Hayden O, Lakadamyali M, Zhuang X W and Lieber C M 2004 Proc. Natl. Acad. Sci. USA 101 14017
|
[52] |
Zhang Y, Terrill R H and Bohn P W 1998 J. Am. Chem. Soc. 120 9969
|
[53] |
Liu Z and Searson P C 2006 J. Phys. Chem. B 110 4318
|
[54] |
Shao L, Diao J J, Tang Z, Liu S, Shen S C, Rui X, Liu J, Yu D and Zhao Q 2014 Nanoscale 6 4089
|
[55] |
McFarland A D and van Duyne R P 2003 Nano Lett. 3 1057
|
[56] |
Willets K A and van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
|
[57] |
Mullett W M, Lai E P C and Yeung J M 2000 Methods 22 77
|
[58] |
Campbell C T and Kim G 2007 Biomaterials 28 2380
|
[59] |
Wei H, Wang Z, Zhang J, House S, Gao Y G, Yang L, Robinson H, Tan L H, Xing H, Hou C, Robertson I M, Zuo J M and Lu Y 2011 Nat. Nanotech. 6 93
|
[60] |
Lacerda S H D, Park J J, Meuse C, Pristinski D, Becker M L, Karim A and Douglas J F 2010 ACS Nano 4 365
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|