Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127307    DOI: 10.1088/1674-1056/24/12/127307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structures and electrical properties of pure and vacancy-included ZnO NWs of different sizes

Yu Xiao-Xia (于晓霞)a, Zhou Yan (周彦)a, Liu Jia (刘甲)b, Jin Hai-Bo (金海波)b, Fang Xiao-Yong (房晓勇)a, Cao Mao-Sheng (曹茂盛)b
a School of Science, Yanshan University, Qinhuangdao 066004, China;
b School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  The structures and electronic properties of ZnO nanowires (NWs) of different diameters are investigated by employing the first-principles density functional theory. The results indicate that the oxygen vacancy (VO) exerts a more evident influence on the band gap of the ZnO NWs. However, the effect will be weakened with the increase of the diameter. In addition, the energy band shifts downward due to the existence of VO and the offset decreases with the reduction of the VO concentration. As the concentration of surface Zn atoms decreases, the conduction band shifts downward, while 2p electrons are lost in the oxygen vacancy, resulting in the split of valence band and the formation of an impurity level. Our findings agree well with the previous observations and will be of great importance for theoretical research based on ZnO NWs.
Keywords:  ZnO NWs      oxygen vacancies      lattice structure      electronic properties      first-principles theory  
Received:  09 July 2015      Revised:  25 August 2015      Accepted manuscript online: 
PACS:  73.61.Ga (II-VI semiconductors)  
  81.07.Gf (Nanowires)  
  61.72.jd (Vacancies)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51132002 and 11574261) and the Natural Science Foundation of Hebei Province, China (Grant No. A2015203261).
Corresponding Authors:  Fang Xiao-Yong, Cao Mao-Sheng     E-mail:  fang@ysu.edu.cn;caomaosheng@bit.edu.cn

Cite this article: 

Yu Xiao-Xia (于晓霞), Zhou Yan (周彦), Liu Jia (刘甲), Jin Hai-Bo (金海波), Fang Xiao-Yong (房晓勇), Cao Mao-Sheng (曹茂盛) Structures and electrical properties of pure and vacancy-included ZnO NWs of different sizes 2015 Chin. Phys. B 24 127307

[1] Janotti A and Van de Walle C G 2009 Rep. Prog. Phys. 72 126501
[2] Pearton S J, Norton D P, Ip K, Heo Y W and Steiner 2005 Prog. Mater. Sci. 50 293
[3] Ding Y, Kong X Y and Wang Z L 2004 Phys. Rev. B 70 235408
[4] Cui J B 2012 Materials Characterization 64 43
[5] He X B, Yang T Z, Zhang C D, Guo H M, Shi D X, Shen C M and Gao H J 2008 Chin. Phys. B 17 3444
[6] Minami T, Sato H, Nanto H and Takata S 1985 Jpn. J. Appl. Phys. 24 L781
[7] Lee E C, Kim Y S, Jin Y G and Chang K J 2001 Phys. Rev. B 64 085120
[8] Fang X Y, Cao M S, Shi X L, Hou Z L, Song W L and Yuan J 2010 J. Appl. Phys. 107 054304
[9] Wang D F and Zhang T J 2009 Solid State Commun. 149 1947
[10] Wong K M, Fang Y G, Devaux A, Wen L Y, Huang J, De C L and Lei Y 2011 Nanoscale 3 4830
[11] Seo K, Suh M and Ju S 2013 Electron. Mater. Lett. 9 273
[12] Chris G and Van de Walle 2001 Physica B 308-310 899
[13] He M R, Xiao P, Zhao J, Dai S, Ke F J and Zhu J 2011 J. Appl. Phys. 109 123504
[14] Wang L N, Fang X Y, Hou Z L, Li Y L, Wang K, Yuan J and Cao M S 2011 Chin. Phys. Lett. 28 027101
[15] Deng B, Da Rosa A L, Frauenheim T, Xiao J P, Shi X Q and Zhang R Q 2014 Nanoscale 6 11882
[16] Wu F, Meng P W, Luo K, Liu Y F and Kan E J 2015 Chin. Phys. B 24 037504
[17] Yu X X, Zheng H M, Fang X Y, Jin H B and Cao M S 2014 Chin. Phys. Lett. 31 117301
[18] Fang D Q and Zhang R Q 2011 J. Appl. Phys. 109 044306
[19] Haffad S, Cicero G and Samah M 2011 Energy Procedia 10 128
[20] Su C C and Chen J L 2011 Mater. Res. Bull. 46 1686
[21] Zheng H M, Fang X Y, Cai L X, Yin A C, Jin H B, Yu X X and Cao M S 2014 Chin. Phys. B 23 126102
[1] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[2] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[3] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[4] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[5] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[6] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[7] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[8] Low temperature ferromagnetism in CaCu3Ti4O12
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙). Chin. Phys. B, 2021, 30(9): 098103.
[9] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[10] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[11] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[12] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[13] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[14] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[15] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
No Suggested Reading articles found!