PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy |
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民)†, and Ming-Xing Jin(金明星)‡ |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract A combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy is investigated. Depositing Au nanoparticles at the surface of a brass target can enhance the coupling of the target and the laser. More atoms in the brass sample are excited. As a secondary excitation source, spark discharge reheats the generated plasma, which further amplifies the enhancement results of nanoparticles. The spectral intensity with the spark discharge increases more obviously with nanoparticle concentration increasing than without the spark discharge. Also, plasma temperature and electron density are calculated by the Boltzmann plot and Stark broadening. The changes in the plasma temperature and electron density are consistent with the spectral emission changes.
|
Received: 08 December 2021
Revised: 13 February 2022
Accepted manuscript online: 02 March 2022
|
PACS:
|
52.50.Lp
|
(Plasma production and heating by shock waves and compression)
|
|
52.38.Mf
|
(Laser ablation)
|
|
32.30.Jc
|
(Visible and ultraviolet spectra)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307701), the National Natural Science Foundation of China (Grant Nos. 11674128, 11674124, and 11974138), and the Jilin Provincial Scientific and Technological Development Program, China (Grant No. 20170101063JC). |
Corresponding Authors:
An-Min Chen, Ming-Xing Jin
E-mail: amchen@jlu.edu.cn;mxjin@jlu.edu.cn
|
Cite this article:
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星) Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy 2022 Chin. Phys. B 31 085201
|
[1] Wu D, Sun L, Liu P, Hai R and Ding H 2018 Appl. Spectrosc. 72 225 [2] Liu P, Liu J, Wu D, Sun L, Hai R and Ding H 2018 Plasma Chem. Plasma P. 38 803 [3] Guo K, Chen A and Gao X 2020 Optik 208 164067 [4] Zhang D, Chen A, Wang Q, Xu W and Jin M 2019 Optik 202 163511 [5] Yang L, Liu M, Liu Y T, Li Q X, Li S Y, Jiang Y F, Chen A M and Jin M X 2020 Chin. Phys. B 29 065203 [6] Yang H X, Fu H B, Wang H D, Jia J W, Sigrist M W and Dong F Z 2016 Chin. Phys. B 25 065201 [7] Wang X S, Ma Y M, Gao X and Lin J Q 2020 Acta Phys. Sin. 69 029502 (in Chinese) [8] Gaft M, Nagli L, Gornushkin I and Raichlin Y 2020 Spectrochim. Acta B:At. Spectrosc. 173 105989 [9] Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C and Han X 2018 Appl. Spectrosc. Rev. 53 1 [10] Yang X, Li S, Jiang Y, Chen A and Jin M 2019 Acta Phys. Sin. 68 065201 (in Chinese) [11] Dong P K, Zhao S Y, Zheng K X, Wang J, Gao X, Hao Z Q and Lin J Q 2021 Acta Phys. Sin. 70 040201 (in Chinese) [12] Peng Y, Zhang D S, Chen H Y, Wen Y, Luo S D, Chen L, Chen K J and Zhu Y M 2012 Appl. Opt. 51 635 [13] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater 9 193 [14] De Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M and De Pascale O 2014 Spectrochim. Acta B:At. Spectrosc. 98 19 [15] De Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M and De Pascale O 2013 Anal. Chem. 85 10180 [16] Wang Y Y, Zhao N J, Ma M J, Yu Y, Meng D S, Gu Y H, Jia Y, Liu J G and Liu W Q 2017 Spectrosc. Spect. Anal. 37 1525 [17] Li X, Yang Z, Wu J, Wei W, Qiu Y, Jia S and Qiu A 2017 J. Phys. D:Appl. Phys. 50 015203 [18] Li B H, Gao X, Song C and Lin J Q 2016 Acta Phys. Sin. 65 235201 (in Chinese) [19] Lednev V N, Grishin M Y, Sdvizhenskii P A, Asyutin R D, Tretyakov R S, Stavertiy A Y and Pershin S M 2019 J. Anal. At. Spectrom. 34 607 [20] Hai R, He Z, Wu D, Tong W, Sattar H, Imran M and Ding H 2019 J. Anal. At. Spectrom. 34 2378 [21] Sanginés R, Sobral H and Alvarez-Zauco E 2012 Spectrochim. Acta B:At. Spectrosc. 68 40 [22] Hussain A, Tanveer M, Farid G, Hussain M B, Azam M and Khan W 2018 Optik 172 1012 [23] Waheed S, Bashir S, Dawood A, Anjum S, Akram M, Hayat A, Amin S and Zaheer A 2017 Optik 140 536 [24] Hussain A, Gao X, Hao Z and Lin J 2016 Optik 127 10024 [25] Babushok V I, DeLucia F C, Gottfried J L, Munson C A and Miziolek A W 2006 Spectrochim. Acta B:At. Spectrosc. 61 999 [26] Li K, Zhou W, Shen Q, Shao J and Qian H 2010 Spectrochim. Acta B:At. Spectrosc. 65 420 [27] Zhou W, Li K, Li X, Qian H and Liu W 2011 Opt. Lett. 36 2961 [28] Zhou W, Li K, Qian H, Ren Z and Yu Y 2012 Appl. Opt. 51 B42 [29] Hassanimatin M M, Tavassoli S H, Nosrati Y and Safi A 2019 Phys. Plasmas 26 033303 [30] Guo J, Wang T, Shao J, Chen A and Jin M 2018 J. Anal. At. Spectrom. 33 2116 [31] Guo L, Hu W, Zhang B, He X, Li C, Zhou Y, Cai Z, Zeng X and Lu Y 2011 Opt. Express 19 14067 [32] Hao Z, Guo L, Li C, Shen M, Zou X, Li X, Lu Y and Zeng X 2014 J. Anal. At. Spectrom. 29 2309 [33] Guo L, Zhang B, He X, Li C, Zhou Y, Wu T, Park J, Zeng X and Lu Y 2012 Opt. Express 20 1436 [34] Su X J, Zhou W D and Qian H G 2014 J. Anal. At. Spectrom. 29 2356 [35] Yang F, Jiang L, Wang S, Cao Z, Liu L, Wang M and Lu Y 2017 Opt. Laser Technol. 93 194 [36] Zhang D, Chen A, Chen Y, Wang Q, Li S, Jiang Y and Jin M 2021 J. Anal. At. Spectrom. 36 1280 [37] Wang Y, Jiang Y, He X, Chen Y and Li R 2018 Spectrochim. Acta B:At. Spectrosc. 150 9 [38] Koral C, Gaudiuso R, De A and Giacomo 2014 Spectrochim. Acta B:At. Spectrosc. 98 19 [39] Galbács G, Kéri A, Kohut A, Veres M and Geretovszky Zs 2021 J. Anal. At. Spectrom. 36 1826 [40] Mutic, Jelena, Momcilovic, Milos, Trtica, Milan, Zivkovic, Sanja, Savovic and Staicu 2017 Spectrochim. Acta B:At. Spectrosc. 128 22 [41] De Giacomo A, Dell'Aglio M, Gaudiuso R, Koral C and Valenza G 2016 J. Anal. At. Spectrom. 31 1566 [42] Marinica D C, Kazansky A K, Nordlander P, Aizpurua J and Borisov A G 2012 Nano Lett. 12 1333 [43] El Sherbini A M and Parigger C G 2016 Spectrochim. Acta B:At. Spectrosc. 124 79 [44] Zorba V, Mao X and Russo R E 2015 Spectrochim. Acta B:At. Spectrosc. 113 37 [45] Zhang S, Wang X, He M, Jiang Y, Zhang B, Hang W and Huang B 2014 Spectrochim. Acta B:At. Spectrosc. 97 13 [46] Zhou W, Li K, Li X, Qian H, Shao J, Fang X, Xie P and Liu W 2011 Opt. Lett. 36 2961 [47] Dong L, Qi Y, Zengchao Z and Li Y 2008 Plasma Sources Sci. T. 17 015015 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|