Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 116301    DOI: 10.1088/1674-1056/24/11/116301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations

Yang Xiao-Yong (杨晓勇), Lu Yong (鲁勇), Zheng Fa-Wei (郑法伟), Zhang Ping (张平)
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Mechanical, electronic, and thermodynamic properties of zirconium carbide have been systematically studied using the ab initio calculations. The calculated equilibrium lattice parameter, bulk modulus, and elastic constants are all well consistent with the experimental data. The electronic band structure indicates that the mixture of C 2p and Zr 4d and 4p orbitals around the Fermi level makes a large covalent contribution to the chemical bonds between the C and Zr atoms. The Bader charge analysis suggests that there are about 1.71 electrons transferred from each Zr atom to its nearest C atom. Therefore, the Zr-C bond displays a mixed ionic/covalent character. The calculated phonon dispersions of ZrC are stable, coinciding with the experimental measurement. A drastic expansion in the volume of ZrC is seen with increasing temperature, while the bulk modulus decreases linearly. Based on the calculated phonon dispersion curves and within the quasi-harmonic approximation, the temperature dependence of the heat capacities is obtained, which gives a good description compared with the available experimental data.
Keywords:  first-principles calculations      mechanical properties      electronic properties      thermodynamic properties  
Received:  01 May 2015      Revised:  08 June 2015      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  62.20.-x (Mechanical properties of solids)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  65.40.-b (Thermal properties of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51071032).
Corresponding Authors:  Zhang Ping     E-mail:  zhang_ping@iapcm.ac.cn

Cite this article: 

Yang Xiao-Yong (杨晓勇), Lu Yong (鲁勇), Zheng Fa-Wei (郑法伟), Zhang Ping (张平) Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations 2015 Chin. Phys. B 24 116301

[1] Li C H, Li M K, Yin D, Liu F Q and Fan X J;2005 Chin. Phys. B 14 2287
[2] Landwehr S E, Hilmas G E, Fahrenholtz W G, Talmyc I G and Wang H;2009 Mater. Chem. Phys. 115 690
[3] Tan L, Allen T R and Demkowicz P;2010 Solid State Ionics 181 1156
[4] Upadhya K, Yang J M and Hoffman W P 1997 J. Am. Ceram. Soc. Bull. 76 51
[5] Shumilova R G and Kosolapova T Y;1968 Sov. Powder Metal. Met. Ceram. 7 317
[6] Liu W, Wan J P, Cai W P, Liang J H, Zhou X S and Long X G;2014 Chin. Phys. B 23 098103
[7] Zou L H, Wali N, Yang J M and Bansal N P;2010 J. Eur. Ceram. Soc. 30 1527
[8] Nosek A, Conzen J, Doescher H, Martin C and Blanchard J;2007 J. Nucl. Mater. 371 288
[9] Ryu H J, Lee Y W, Cha S I and Hong S H;2006 J. Nucl. Mater. 352 341
[10] Ogawa T and Ikawa K;1981 J. Nucl. Mater. 99 85
[11] Vasudevamurthy G, Knight T W, Roberts E and Adams T M;2008 J. Nucl. Mater. 374 241
[12] Ihara H, Hirabayashi M and Nakagawa H;1976 Phys. Rev. B 14 1707
[13] Alward J F, Fong C Y, El-Batanouny M and Wooten F;1975 Phys. Rev. B 12 1105
[14] Potoracha V I, Tskhai V A and Geld P V;1971 Phys. Status Solidi B 48 119
[15] Blöchl P E;1994 Phys. Rev. B 50 17953
[16] Hohenberg P and Kohn W;1964 Phys. Rev. 136 B864
[17] Kresse G and Furthmüller J;1996 Phys. Rev. B 54 11169
[18] Perdew J P, Bruke K and Ernzerhof M;1996 Phys. Rev. Lett. 77 3865
[19] Monkhorst H J and Pack J D;1976 Phys. Rev. B 13 5188
[20] Nye J F 1957 Physical Properties of Crystals (Oxford: Clarendon Press) p. 322
[21] Westbrook J H and Fleischer R L (Eds.) 1995 Intermetallic Compunds: Principles and Practice, Principles (Vol. 1) (London: Wiley) Chapter 9 p. 195
[22] Birch F;1947 Phys. Rev. B 71 809
[23] Méc S, Amrane N, Nabi Z, Abbar B and Aourag H;2000 Physica A 285 392
[24] Cheng D Y, Wang S Q and Ye H Q;2004 J. Alloys Compd. 377 221
[25] Fu H Z, Peng W M and Gao T;2009 Mater. Chem. Phys. 115 789
[26] Weber W;1973 Phys. Rev. B 8 5082
[27] Green D J 1998 An Introduction to the Mechanical Properties of Ceramics (Cambridge: Press Syndicate of the University of Cambridge) p. 210
[28] Reuss A;1929 Z. Angew. Math. Mech. 9 49
[29] Brown H L, Armstrong P E and Kempter C P;1966 J. Chem. Phys. 45 547
[30] Brown H L and Kempter C P;1966 Phys. Status Solidi 18 K21
[31] Yang Q, Lengauer W, Koch T, Scheerer M and Smid I;2000 J. Alloys Compd. 309 L5
[32] Pugh S F;1954 Philos. Mag. 45 823
[33] Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O;1998 J. Appl. Phys. 84 4891
[34] Landwehr S E, Hilmas G E, Fahrenholtz W G, Talmy I G and Wang H;2009 Mater. Chem. Phys. 115 690
[35] Wang J Y, Zhou Y C, Lin Z J, Liao T and He L F;2006 Phys. Rev. B 73 134107
[36] Wu Z G, Chen X J, Struzhkin V V and Cohen R E;2005 Phys. Rev. B 71 214103
[37] Wang B T, Zhang W X and Li W D;2013 Sci. Adv. Mater. 5 1916
[38] Bader R F W 1990 Atoms in Molecules: A Quantum Theory (New York: Oxford University Press) p. 155
[39] Tang W, Sanville E and Henkelman G;2009 J. Phys.: Condens. Matter. 21 084204
[40] Nielsen O H and Martin R M;1985 Phys. Rev. B 32 3780
[41] Parlinski K, Li Z Q and Kawazoe Y;1997 Phys. Rev. Lett. 78 4063
[42] Smith H G;1980 Aust. J. Phys. 33 861
[43] Zhang P, Wang B T and Zhao X G;2010 Phys. Rev. B 82 144110
[44] Wang B T, Zhang P, Lizárraga R, Marco I D and Eriksson O;2013 Phys. Rev. B 88 104107
[45] Souvatzis P and Eriksson;2008 Phys. Rev. B 77 024110
[46] Guillermet A F;1995 J. Alloys Compd. 217 69
[47] Lengauer W, Binder S, Aigner K, Ettmayer P, Guillou A, Debuigne J and Groboth G;1995 J. Alloys Compd. 217 137
[48] JANAF Thermochemical Tables 1985 J. Phys. Chem. Ref. Data 14 1067
[49] Abdollahi A;2013 Physica B 410 57
[50] Lu X G, Selleby M and Sundman B;2007 Acta Materialia 55 1215
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[8] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!