Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 116302    DOI: 10.1088/1674-1056/24/11/116302

Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations

Yuan Ye (袁野)a, Xu Run (徐闰)a, Xu Hai-Tao (徐海涛)a, Hong Feng (洪峰)b, Xu Fei (徐飞)b, Wang Lin-Jun (王林军)a
a School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
b Department of Physics, Shanghai University, Shanghai 200444, China
Abstract  The electronic structures of cubic structure of ABX3 (A= CH3NH3,Cs; B= Sn, Pb; X= Cl, Br, I) are analyzed by density functional theory using the Perdew-Burke-Ernzerhof exchange-correlation functional and using the Heyd-Scuseria-Ernzerhof hybrid functional. The valence band maximum (VBM) is found to be made up by an antibonding hybridization of B s and X p states, whereas bands made up by the π antibonding of B p and X p states dominates the conduction band minimum (CBM). The changes of VBM, CBM, and band gap with ion B and X are then systematically summarized. The natural band offsets of ABX3 are partly given. We also found for all the ABX3 perovskite materials in this study, the bandgap increases with an increasing lattice parameter. This phenomenon has good consistency with the experimental results.
Keywords:  first-principles theory      electron density of states      band structure of crystalline solids      organic-inorganic hybrid nanostructures  
Received:  26 March 2015      Revised:  14 June 2015      Accepted manuscript online: 
PACS: (First-principles theory)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  81.07.Pr (Organic-inorganic hybrid nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11375112).
Corresponding Authors:  Xu Run     E-mail:

Cite this article: 

Yuan Ye (袁野), Xu Run (徐闰), Xu Hai-Tao (徐海涛), Hong Feng (洪峰), Xu Fei (徐飞), Wang Lin-Jun (王林军) Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations 2015 Chin. Phys. B 24 116302

[1] Heidrich K, Schafer W, Schreiber M, Sochtig J, Grandke T and Stolz H J;1981 Phys. Rev. B 24 5642
[2] Chung I, Lee B, He J Q, Chang R P and Kanatzidis M G;2012 Nature 485 486
[3] Snaith H J;2013 Phys. Chem. Lett. 4 3623
[4] Bretschneider S A, Weickert J, Dorman J A and Schmidt-Mende L;2014 APL Mater. 2 040701
[5] Gao P, Gratzel M and Nazeeruddin M K;2014 Energ. Environ. Sci. 7 2448
[6] Umebayashi T, Asai K, Kondo T and Nakao A;2003 Phys. Rev. B 67 155405
[7] Brivio F, Walker A B and Walsh A;2013 APL Mater. 1 042111
[8] Lang L, Yang J H, Liu H R, Xiang H J and Gong X G;2014 Phys. Lett. A 378 290
[9] Ghebouli M A, Ghebouli B and Fatmi M;2011 Physica B 406 1837
[10] Chang Y H, Park C H and Matsuishi K;2004 J. Korean Chem. Soc. 44 889
[11] Murtaza G and Ahmad I;2011 Physica B 406 3222
[12] Perdew J P, Burke K and Ernzerhof M;1996 Phys. Rev. Lett. 77 3865
[13] Heyd J and Scuseria G E;2004 J. Chem. Phys. 120 7274
[14] Hautier G, Miglio A, Ceder G, Rignanese G M and Gonze X;2013 Nat. Commun. 4 2292
[15] Yamada Y, Nakamura T, Endo M, Wakamiya A and Kanemitsu Y;2015 IEEE J. Photovolt. 5 401
[16] Heyd J, Scuseria G E and Ernzerhof M;2006 J. Chem. Phys. 124 219906
[17] Kresse G and Furthmüller J;1996 Phys. Rev. B 54 11169
[18] Umari P, Mosconi E and De Angelis F;2014 Sci. Rep. 4 4467
[19] Takahashi Y, Obara R, Lin Z Z, Takahashi Y, Naito T, Inabe T and Terakura K;2011 Dalton T. 40 5563
[20] Yamada K, Kawaguchi H, Matsui T, Okuda T and Ichiba S;1990 Bull. Chem. Soc. Jpn. 63 2521
[21] Yamada K, Funabiki S, Horimoto H, Matsui T, Okuda T and Ichiba S;1991 Chem. Lett. 20 801
[22] Lim A R and Jeong S Y;1999 Solid State Commun. 110 131
[23] Jiang L Q, Guo J K, Liu H B, Zhu M, Zhou X, Wu P and Li C H;2006 J. Phys. Chem. Solids 67 1531
[24] Trots D M and Myagkota S V;2008 J. Phys. Chem. Solids 69 2520
[25] Yamada K, Kuranaga Y, Ueda K, Goto S, Okuda T and Furukawa Y;1998 Bull. Chem. Soc. Jpn. 71 127
[26] Chiarella F, Zappettini A and Licci F;2008 Phys. Rev. B 77 045129
[27] Kitazawa N, Watanabe Y and Nakamura Y;2002 J. Mater. Sci. 37 3585
[28] Noh J H, Im S H, Heo J H, Mandal T N and Seok S I;2013 Nano Lett. 13 1764
[29] Baikie T, Fang Y N, Kadro J M, Schreyer M, Wei F X, Mhaisalkar S G, Graetzel M and White T J;2013 J. Mater. Chem. A 1 5628
[30] Heidrich K, Schafer W, Schreiber M, Sochtig J, Trendel G, Treusch J, Grandke T and Stolz H J;1981 Phys. Rev. B 24 5642
[31] Hao F, Stoumpos C C, Chang R P and Kanatzidis M G;2014 J. Am. Chem. Soc. 136 8094
[32] Xu F, Cao R, Ma Z, Xu R, Chen D and Wu Y 2014 1st Conference on New Generation Solar Cells and Perovskite Solar Cells, May 24-25, 2014, Beijing, China, p. 36
[33] Shi J J, Dong W, Xu Y Z, Li C H, Lü S T, Zhu L F, Dong J, Luo Y H, Li D M, Meng Q B and Chen Q;2013 Chin. Phys. Lett. 30 128402
[1] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[2] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[3] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[4] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[5] Structural, electronic, and optical properties of hexagonal and triangular SiC NWs with different diameters
Yan-Jing Li(李彦景), Ya-Lin Li(李亚林), Shu-Long Li(李树龙), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2017, 26(4): 047309.
[6] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[7] First-principles calculations of structure and elasticity of hydrous fayalite under high pressure
Chuan-Yu Zhang(张传瑜), Xu-Ben Wang(王绪本), Xiao-Feng Zhao(赵晓凤), Xing-Run Chen(陈星润), You Yu(虞游), Xiao-Feng Tian(田晓峰). Chin. Phys. B, 2017, 26(12): 126103.
[8] First-principles calculations of structural and electronic properties of TlxGa1-xAs alloys
G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan, N. B. Yurdasan. Chin. Phys. B, 2016, 25(2): 027101.
[9] Structures and electrical properties of pure and vacancy-included ZnO NWs of different sizes
Yu Xiao-Xia (于晓霞), Zhou Yan (周彦), Liu Jia (刘甲), Jin Hai-Bo (金海波), Fang Xiao-Yong (房晓勇), Cao Mao-Sheng (曹茂盛). Chin. Phys. B, 2015, 24(12): 127307.
[10] First-principles study of orbital ordering in cubic fluoride KCrF3
Ming Xing (明星), Xiong Liang-Bin (熊良斌), Xu Huo-Xi (徐火希), Du Fei (杜菲), Wang Chun-Zhong (王春忠), Chen Gang (陈岗). Chin. Phys. B, 2014, 23(3): 037401.
[11] Effects of N doping on photoelectric properties of along different directions of ZnO bulk and nanotube
Zheng Hong-Mei (郑红梅), Fang Xiao-Yong (房晓勇), Cai Li-Xia (蔡丽霞), Yin Ai-Cha (尹爱查), Jin Hai-Bo (金海波), Yu Xiao-Xia (于晓霞), Cao Mao-Sheng (曹茂盛). Chin. Phys. B, 2014, 23(12): 126102.
[12] First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model
Wu Qiong (吴琼), Li Shu-Suo (李树索), Ma Yue (马岳), Gong Sheng-Kai (宫声凯). Chin. Phys. B, 2012, 21(10): 109102.
No Suggested Reading articles found!